Mathematical Logic (Math 570) Lecture Notes

Lou van den Dries

Fall Semester 2019

Contents

1 Preliminaries 1
1.1 Mathematical Logic: a brief overview 1
1.2 Sets and Maps 5
2 Basic Concepts of Logic 13
2.1 Propositional Logic 13
2.2 Completeness for Propositional Logic 19
2.3 Languages and Structures 24
2.4 Variables and Terms 28
2.5 Formulas and Sentences 31
2.6 Models 35
2.7 Logical Axioms and Rules; Formal Proofs 38
3 The Completeness Theorem 43
3.1 Another Form of Completeness 43
3.2 Proof of the Completeness Theorem 44
3.3 Some Elementary Results of Predicate Logic 50
3.4 Equational Classes and Universal Algebra 54
4 Some Model Theory 59
4.1 Löwenheim-Skolem; Vaught's Test 59
4.2 Elementary Equivalence and Back-and-Forth 64
4.3 Quantifier Elimination 66
4.4 Presburger Arithmetic 70
4.5 Skolemization and Extension by Definition 74
5 Computability, Decidability, and Incompleteness 81
5.1 Computable Functions 81
5.2 The Church-Turing Thesis 90
5.3 Primitive Recursive Functions 91
5.4 Representability 95
5.5 Decidability and Gödel Numbering 99
5.6 Theorems of Gödel and Church 106
5.7 A more explicit incompleteness theorem 108
5.8 Undecidable Theories . 111

Chapter 1

Preliminaries

We start with a brief overview of mathematical logic as covered in this course. Next we review some basic notions from elementary set theory, which provides a medium for communicating mathematics in a precise and clear way. In this course we develop mathematical logic using elementary set theory as given, just as one would do with other branches of mathematics, like group theory or probability theory.

For more on the course material, see
Shoenfield, J. R., Mathematical Logic, Reading, Addison-Wesley, 1967.
For additional material in Model Theory we refer the reader to
Chang, C. C. and Keisler, H. J., Model Theory, New York, NorthHolland, 1990,

Poizat, B., A Course in Model Theory, Springer, 2000,
and for additional material on Computability, to
Rogers, H., Theory of Recursive Functions and Effective Computability, McGraw-Hill, 1967.

1.1 Mathematical Logic: a brief overview

Aristotle identified some simple patterns in human reasoning, and Leibniz dreamt of reducing reasoning to calculation. As a viable mathematical subject, however, logic is relatively recent: the 19th century pioneers were Bolzano, Boole, Cantor, Dedekind, Frege, Peano, C.S. Peirce, and E. Schröder. From our perspective we see their work as leading to boolean algebra, set theory, propositional logic, predicate logic, as clarifying the foundations of the natural and real number systems, and as introducing suggestive symbolic notation for logical operations. Also, their activity led to the view that logic + set theory can serve as a basis for
all of mathematics. This era did not produce theorems in mathematical logic of any real depth, ${ }^{1}$ but it did bring crucial progress of a conceptual nature, and the recognition that logic as used in mathematics obeys mathematical rules that can be made fully explicit.

In the period 1900-1950 important new ideas came from Russell, Zermelo, Hausdorff, Hilbert, Löwenheim, Ramsey, Skolem, Lusin, Post, Herbrand, Gödel, Tarski, Church, Kleene, Turing, and Gentzen. They discovered the first real theorems in mathematical logic, with those of Gödel having a dramatic impact. Hilbert (in Göttingen), Lusin (in Moscow), Tarski (in Warsaw and Berkeley), and Church (in Princeton) had many students and collaborators, who made up a large part of that generation and the next in mathematical logic. Most of these names will be encountered again during the course.

The early part of the 20th century was also marked by the so-called
foundational crisis in mathematics.

A strong impulse for developing mathematical logic came from the attempts during these times to provide solid foundations for mathematics. Mathematical logic has now taken on a life of its own, and also thrives on many interactions with other areas of mathematics and computer science.

In the second half of the last century, logic as pursued by mathematicians gradually branched into four main areas: model theory, computability theory (or recursion theory), set theory, and proof theory. The topics in this course are part of the common background of mathematicians active in any of these areas.

What distinguishes mathematical logic within mathematics is that

> statements about mathematical objects and structures
are taken seriously as mathematical objects in their own right. More generally, in mathematical logic we formalize (formulate in a precise mathematical way) notions used informally by mathematicians such as:

- property
- statement (in a given language)
- structure
- truth (what it means for a given statement to be true in a given structure)
- proof (from a given set of axioms)

- algorithm

[^0]Once we have mathematical definitions of these notions, we can try to prove theorems about these formalized notions. If done with imagination, this process can lead to unexpected rewards. Of course, formalization tends to caricature the informal concepts it aims to capture, but no harm is done if this is kept firmly in mind.
Example. The notorious Goldbach Conjecture asserts that every even integer greater than 2 is a sum of two prime numbers. With the understanding that the variables range over $\mathbf{N}=\{0,1,2, \ldots\}$, and that $0,1,+, \cdot,<$ denote the usual arithmetic operations and relations on \mathbf{N}, this assertion can be expressed formally as

$$
\begin{equation*}
\forall x[(1+1<x \wedge \operatorname{even}(x)) \rightarrow \exists p \exists q(\operatorname{prime}(p) \wedge \operatorname{prime}(q) \wedge x=p+q)] \tag{GC}
\end{equation*}
$$

where even (x) abbreviates $\exists y(x=y+y)$ and prime (p) abbreviates

$$
1<p \wedge \forall r \forall s(p=r \cdot s \rightarrow(r=1 \vee s=1))
$$

The expression $G C$ is an example of a formal statement (also called a sentence) in the language of arithmetic, which has symbols $0,1,+, \cdot,<$ to denote arithmetic operations and relations, in addition to logical symbols like $=, \wedge, \vee, \neg, \rightarrow, \forall, \exists$, and variables x, y, z, p, q, r, s.

The Goldbach Conjecture asserts that this particular sentence $G C$ is true in the structure $(\mathbf{N} ; 0,1,+, \cdot,<)$. (No proof of the Goldbach Conjecture is known.) It also makes sense to ask whether the sentence $G C$ is true in the structure

$$
(\mathbf{R} ; 0,1,+, \cdot,<)
$$

where now the variables range over \mathbf{R} and $0,1,+, \cdot,<$ have their natural 'real' meanings. (It's not, as is easily verified. That the question makes sense -has a yes or no answer-does not mean that it is of any interest.)

A century of experience gives us confidence that all classical number-theoretic results - old or new, proved by elementary methods or by sophisticated algebra and analysis - can be proved from the Peano axioms for arithmetic. ${ }^{2}$ However, in our present state of knowledge, $G C$ might be true in $(\mathbf{N} ; 0,1,+, \cdot,<)$, but not provable from those axioms. (On the other hand, once you know what exactly we mean by
provable from the Peano axioms,
you will see that if $G C$ is provable from those axioms, then $G C$ is true in $(\mathbf{N} ; 0,1,+, \cdot,<)$, and that if $G C$ is false in $(\mathbf{N} ; 0,1,+, \cdot,<)$, then its negation $\neg G C$ is provable from those axioms.)

The point of this example is simply to make the reader aware of the notions "true in a given structure" and "provable from a given set of axioms," and their difference. One objective of this course is to figure out the connections (and disconnections) between these notions.

[^1]
Some highlights (1900-1950)

The results below are among the most frequently used facts of mathematical logic. The terminology used in stating these results might be unfamiliar, but that should change during the course. What matters is to get some preliminary idea of what we are aiming for. As will become clear during the course, each of these results has stronger versions, on which applications often depend, but in this overview we prefer simple statements over strength and applicability.

We begin with two results that are fundamental in model theory. They concern the notion of model of Σ where Σ is a set of sentences in a language L. At this stage we only say by way of explanation that a model of Σ is a mathematical structure in which all sentences of Σ are true. For example, if Σ is the (infinite) set of axioms for fields of characteristic zero in the language of rings, then a model of Σ is just a field of characteristic zero.

Theorem of Löwenheim and Skolem. If Σ is a countable set of sentences in some language and Σ has a model, then Σ has a countable model.

Compactness Theorem (Gödel, Mal'cev). Let Σ be a set of sentences in some language. Then Σ has a model if and only if each finite subset of Σ has a model.

The next result goes a little beyond model theory by relating the notion of "model of Σ " to that of "provability from Σ ":

Completeness Theorem (Gödel, 1930). Let Σ be a set of sentences in some language L, and let σ be a sentence in L. Then σ is provable from Σ if and only if σ is true in all models of Σ.

In our treatment we shall obtain the first two theorems as byproducts of the Completeness Theorem and its proof. In the case of the Compactness Theorem this reflects history, but the theorem of Löwenheim and Skolem predates the Completeness Theorem. The Löwenheim-Skolem and Compactness theorems do not mention the notion of provability, and thus model theorists often prefer to bypass Completeness in establishing these results; see for example Poizat's book.

Here is an important early result on a specific arithmetic structure:
Theorem of Presburger and Skolem. Each sentence in the language of the structure $(\mathbf{Z} ; 0,1,+,-,<)$ that is true in this structure is provable from the axioms for ordered abelian groups with least positive element 1, augmented, for each $n=2,3,4, \ldots$, by an axiom that says that for every a there is a b such that $a=n b$ or $a=n b+1$ or \ldots or $a=n b+1+\cdots+1$ (with n disjuncts in total). Moreover, there is an algorithm that, given any sentence in this language as input, decides whether this sentence is true in $(\mathbf{Z} ; 0,1,+,-,<)$.

Note that in $(\mathbf{Z} ; 0,1,+,-,<)$ we have not included multiplication among the primitives; accordingly, $n b$ stands for $b+\cdots+b$ (with n summands).

When we do include multiplication, the situation changes dramatically:

Incompleteness and undecidability of arithmetic. (Gödel-Church, 1930's). One can construct a sentence in the language of arithmetic that is true in the structure ($\mathbf{N} ; 0,1,+, \cdot,<$), but not provable from the Peano axioms.

There is no algorithm that, given any sentence in this language as input, decides whether this sentence is true in $(\mathbf{N} ; 0,1,+, \cdot,<)$.

Here "there is no algorithm" is used in the mathematical sense of

> there cannot exist an algorithm,
not in the weaker colloquial sense of "no algorithm is known." This theorem is intimately connected with the clarification of notions like computability and algorithm in which Turing played a key role.

In contrast to these incompleteness and undecidability results on (sufficiently rich) arithmetic, we have

Tarski's theorem on the field of real numbers (1930-1950). Every sentence in the language of arithmetic that is true in the structure

$$
(\mathbf{R} ; 0,1,+, \cdot,<)
$$

is provable from the axioms for ordered fields augmented by the axioms

- every positive element is a square,
- every odd degree polynomial has a zero.

There is also an algorithm that decides for any given sentence in this language as input, whether this sentence is true in $(\mathbf{R} ; 0,1,+, \cdot,<)$.

1.2 Sets and Maps

We shall use this section as an opportunity to fix notations and terminologies that are used throughout these notes, and throughout mathematics. In a few places we shall need more set theory than we introduce here, for example, ordinals and cardinals. The following little book is a good place to read about these matters. (It also contains an axiomatic treatment of set theory starting from scratch.)

Halmos, P. R., Naive set theory, New York, Springer, 1974
In an axiomatic treatment of set theory as in the book by Halmos all assertions about sets below are proved from a few simple axioms. In such a treatment the notion of set itself is left undefined, but the axioms about sets are suggested by thinking of a set as a collection of mathematical objects, called its elements or members. To indicate that an object x is an element of the set A we write $x \in A$, in words: x is in A (or: x belongs to A). To indicate that x is not in A we write $x \notin A$. We consider the sets A and B as the same set (notation: $A=B$) if and only if they have exactly the same elements. We often introduce a set via the bracket notation, listing or indicating inside the brackets its elements.

For example, $\{1,2,7\}$ is the set with 1,2 , and 7 as its only elements. Note that $\{1,2,7\}=\{2,7,1\}$, and $\{3,3\}=\{3\}$: the same set can be described in many different ways. Don't confuse an object x with the set $\{x\}$ that has x as its only element: for example, the object $x=\{0,1\}$ is a set that has exactly two elements, namely 0 and 1 , but the set $\{x\}=\{\{0,1\}\}$ has only one element, namely x.

Here are some important sets that the reader has probably encountered previously.

Examples.

(1) The empty set: \emptyset (it has no elements).
(2) The set of natural numbers: $\mathbf{N}=\{0,1,2,3, \ldots\}$.
(3) The set of integers: $\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$.
(4) The set of rational numbers: \mathbf{Q}.
(5) The set of real numbers: \mathbf{R}.
(6) The set of complex numbers: C.

Remark. Throughout these notes m and n always denote natural numbers. For example, "for all m..." will mean "for all $m \in \mathbf{N}$...".

If all elements of the set A are in the set B, then we say that A is a subset of B (and write $A \subseteq B$). Thus the empty set \emptyset is a subset of every set, and each set is a subset of itself. We often introduce a set A in our discussions by defining A to be the set of all elements of a given set B that satisfy some property P. Notation:

$$
A:=\{x \in B: x \text { satisfies } P\} \quad(\text { hence } A \subseteq B)
$$

Let A and B be sets. Then we can form the following sets:
(a) $A \cup B:=\{x: x \in A$ or $x \in B\}$ (union of A and B);
(b) $A \cap B:=\{x: x \in A$ and $x \in B\}$ (intersection of A and B);
(c) $A \backslash B:=\{x: x \in A$ and $x \notin B\}$ (difference of A and B);
(d) $A \times B:=\{(a, b): a \in A$ and $b \in B\}$ (cartesian product of A and $B)$.

Thus the elements of $A \times B$ are the so-called ordered pairs (a, b) with $a \in A$ and $b \in B$. The key property of ordered pairs is that we have $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$. For example, you may think of $\mathbf{R} \times \mathbf{R}$ as the set of points (a, b) in the $x y$-plane of coordinate geometry.

We say that A and B are disjoint if $A \cap B=\emptyset$, that is, they have no element in common.

Remark. In a definition such as we just gave: "We say that ... if -," the meaning of "if" is actually "if and only if." We committed a similar abuse of language earlier in defining set inclusion by the phrase "If - , then we say that ..." We shall continue such abuse, in accordance with tradition, but only in similarly worded definitions. Also, we shall often write "iff" or " \Leftrightarrow " to abbreviate "if and only if."

Maps

Definition. A map is a triple $f=(A, B, \Gamma)$ of sets A, B, Γ such that $\Gamma \subseteq A \times B$ and for each $a \in A$ there is exactly one $b \in B$ with $(a, b) \in \Gamma$; we write $f(a)$ for this unique b, and call it the value of f at a (or the image of a under f). ${ }^{3}$ We call A the domain of f, and B the codomain of f, and Γ the graph of $f .{ }^{4}$ We write $f: A \rightarrow B$ to indicate that f is a map with domain A and codomain B, and in this situation we also say that f is a map from A to B.

Among the many synonyms of map are
mapping, assignment, function, operator, transformation.
Typically, "function" is used when the codomain is a set of numbers of some kind, "operator" when the elements of domain and codomain are themselves functions, and "transformation" is used in geometric situations where domain and codomain are equal. (We use equal as synonym for the same or identical; also coincide is a synonym for being the same.)

Examples.

(1) Given any set A we have the identity map $1_{A}: A \rightarrow A$ defined by $1_{A}(a)=a$ for all $a \in A$.
(2) Any polynomial $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ with real coefficients a_{0}, \ldots, a_{n} gives rise to a function $x \mapsto f(x): \mathbf{R} \rightarrow \mathbf{R}$. We often use the "maps to" symbol \mapsto in this way to indicate the rule by which to each x in the domain we associate its value $f(x)$.

Definition. Given $f: A \rightarrow B$ and $g: B \rightarrow C$ we have a map $g \circ f: A \rightarrow C$ defined by $(g \circ f)(a)=g(f(a))$ for all $a \in A$. It is called the composition of g and f.

Definition. Let $f: A \rightarrow B$ be a map. It is said to be injective if for all $a_{1} \neq a_{2}$ in A we have $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. It is said to be surjective if for each $b \in B$ there exists $a \in A$ such that $f(a)=b$. It is said to be bijective (or a bijection) if it is both injective and surjective. For $X \subseteq A$ we put

$$
f(X):=\{f(x): x \in X\} \subseteq B \quad \text { (direct image of } X \text { under } f)
$$

(There is a notational conflict here when X is both a subset of A and an element of A, but it will always be clear from the context when $f(X)$ is meant to be the the direct image of X under f; some authors resolve the conflict by denoting this direct image by $f[X]$ or in some other way.) We also call $f(A)=\{f(a): a \in A\}$ the image of f. For $Y \subseteq B$ we put

$$
f^{-1}(Y):=\{x \in A: f(x) \in Y\} \subseteq A \quad \text { (inverse image of } Y \text { under } f \text {). }
$$

Thus surjectivity of our map f is equivalent to $f(A)=B$.

[^2]If $f: A \rightarrow B$ is a bijection then we have an inverse map $f^{-1}: B \rightarrow A$ given by

$$
f^{-1}(b):=\text { the unique } a \in A \text { such that } f(a)=b
$$

Note that then $f^{-1} \circ f=1_{A}$ and $f \circ f^{-1}=1_{B}$. Conversely, if $f: A \rightarrow B$ and $g: B \rightarrow A$ satisfy $g \circ f=1_{A}$ and $f \circ g=1_{B}$, then f is a bijection with $f^{-1}=g$. (The attentive reader will notice that we just introduced a potential conflict of notation: for bijective $f: A \rightarrow B$ and $Y \subseteq B$, both the inverse image of Y under f and the direct image of Y under f^{-1} are denoted by $f^{-1}(Y)$; no harm is done, since these two subsets of A coincide.)

It follows from the definition of "map" that $f: A \rightarrow B$ and $g: C \rightarrow D$ are equal $(f=g)$ if and only if $A=C, B=D$, and $f(x)=g(x)$ for all $x \in A$. We say that $g: C \rightarrow D$ extends $f: A \rightarrow B$ if $A \subseteq C, B \subseteq D$, and $f(x)=g(x)$ for all $x \in A .{ }^{5}$

Definition. A set A is said to be finite if there exists n and a bijection

$$
f:\{1, \ldots, n\} \rightarrow A
$$

Here we use $\{1, \ldots, n\}$ as a suggestive notation for the set $\{m: 1 \leq m \leq n\}$. For $n=0$ this is just \emptyset. If A is finite there is exactly one such n (although if $n>1$ there will be more than one bijection $f:\{1, \ldots, n\} \rightarrow A$); we call this unique n the number of elements of A or the cardinality of A, and denote it by $|A|$. A set which is not finite is said to be infinite.

Definition. A set A is said to be countably infinite if there is a bijection $\mathbf{N} \rightarrow A$. It is said to be countable if it is either finite or countably infinite.

Example. The sets \mathbf{N}, \mathbf{Z} and \mathbf{Q} are countably infinite, but the infinite set \mathbf{R} is not countably infinite. Every infinite set has a countably infinite subset.

One of the standard axioms of set theory, the Power Set Axiom says:
For any set A, there is a set whose elements are exactly the subsets of A.
Such a set of subsets of A is clearly uniquely determined by A, is denoted by $\mathcal{P}(A)$, and is called the power set of A. If A is finite, so is $\mathcal{P}(A)$ and $|\mathcal{P}(A)|=2^{|A|}$. Note that $a \mapsto\{a\}: A \rightarrow \mathcal{P}(A)$ is an injective map. However, there is no surjective map $A \rightarrow \mathcal{P}(A)$:
Cantor's Theorem. Let $S: A \rightarrow \mathcal{P}(A)$ be a map. Then the set

$$
\{a \in A: a \notin S(a)\} \quad(a \text { subset of } A)
$$

is not an element of $S(A)$.
Proof. Suppose otherwise. Then $\{a \in A: a \notin S(a)\}=S(b)$ where $b \in A$. Assuming $b \in S(b)$ yields $b \notin S(b)$, a contradiction. Thus $b \notin S(b)$; but then $b \in S(b)$, again a contradiction. This concludes the proof.

[^3]Let I and A be sets. Then there is a set whose elements are exactly the maps $f: I \rightarrow A$, and this set is denoted by A^{I}. For $I=\{1, \ldots, n\}$ we also write A^{n} instead of A^{I}. Thus an element of A^{n} is a map $a:\{1, \ldots, n\} \rightarrow A$; we usually think of such an a as the n-tuple $(a(1), \ldots, a(n))$, and we often write a_{i} instead of $a(i)$. So A^{n} can be thought of as the set of n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ with each $a_{i} \in A$. For $n=0$ the set A^{n} has just one element - the empty tuple.

An n-ary relation on A is just a subset of A^{n}, and an n-ary operation on A is a map from A^{n} into A. Instead of "1-ary" we usually say "unary", and instead of "2-ary" we can say "binary". For example, $\left\{(a, b) \in \mathbf{Z}^{2}: a<b\right\}$ is a binary relation on \mathbf{Z}, and integer addition is the binary operation $(a, b) \mapsto a+b$ on \mathbf{Z}.

Definition. $\left\{a_{i}\right\}_{i \in I}$ or $\left(a_{i}\right)_{i \in I}$ denotes a family of objects a_{i} indexed by the set I, and is just a suggestive notation for a set $\left\{\left(i, a_{i}\right): i \in I\right\}$, not to be confused with the set $\left\{a_{i}: i \in I\right\}$. (There may be repetitions in the family, that is, it may happen that $a_{i}=a_{j}$ for distinct indices $i, j \in I$, but such repetition is not reflected in the set $\left\{a_{i}: i \in I\right\}$. For example, if $I=\mathbf{N}$ and $a_{n}=a$ for all n, then $\left\{\left(i, a_{i}\right): i \in I\right\}=\{(i, a): i \in \mathbf{N}\}$ is countably infinite, but $\left\{a_{i}: i \in I\right\}=\{a\}$ has just one element.) For $I=\mathbf{N}$ we usually say "sequence" instead of "family".

Given any family $\left(A_{i}\right)_{i \in I}$ of sets (that is, each A_{i} is a set) we have a set

$$
\bigcup_{i \in I} A_{i}:=\left\{x: x \in A_{i} \text { for some } i \in I\right\}
$$

the union of the family, or, more informally, the union of the sets A_{i}. If I is finite and each A_{i} is finite, then so is the union above and

$$
\left|\bigcup_{i \in I} A_{i}\right| \leq \sum_{i \in I}\left|A_{i}\right|
$$

If I is countable and each A_{i} is countable then $\bigcup_{i \in I} A_{i}$ is countable.
Given any family $\left(A_{i}\right)_{i \in I}$ of sets we have a set

$$
\prod_{i \in I} A_{i}:=\left\{\left(a_{i}\right)_{i \in I}: a_{i} \in A_{i} \text { for all } i \in I\right\}
$$

the product of the family. One axiom of set theory, the Axiom of Choice, is a bit special, but we shall use it a few times. It says that for any family $\left(A_{i}\right)_{i \in I}$ of nonempty sets there is a family $\left(a_{i}\right)_{i \in I}$ such that $a_{i} \in A_{i}$ for all $i \in I$, that is, $\prod_{i \in I} A_{i} \neq \emptyset$.

Words

Definition. Let A be a set. Think of A as an alphabet of letters. A word of length n on A is an n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ of letters $a_{i} \in A$; because we think of it as a word (string of letters) we shall write this tuple instead as $a_{1} \ldots a_{n}$ (without parentheses or commas). There is a unique word of length 0 on A, the
empty word and written ϵ. Given a word $a=a_{1} \ldots a_{n}$ of length $n \geq 1$ on A, the first letter (or first symbol) of a is by definition a_{1}, and the last letter (or last symbol) of a is a_{n}. The set of all words on A is denoted A^{*} :

$$
A^{*}=\bigcup_{n} A^{n} \quad(\text { disjoint union })
$$

Logical expressions like formulas and terms will be introduced later as words of a special form on suitable alphabets. When $A \subseteq B$ we can identify A^{*} with a subset of B^{*}, and this will be done whenever convenient.

Definition. Given words $a=a_{1} \ldots a_{m}$ and $b=b_{1} \ldots b_{n}$ on A of length m and n respectively, we define their concatenation $a b \in A^{*}$:

$$
a b=a_{1} \ldots a_{m} b_{1} \ldots b_{n}
$$

Thus $a b$ is a word on A of length $m+n$. Concatenation is a binary operation on A^{*} that is associative: $(a b) c=a(b c)$ for all $a, b, c \in A^{*}$, with ϵ as two-sided identity: $\epsilon a=a=a \epsilon$ for all $a \in A^{*}$, and with two-sided cancellation: for all $a, b, c \in A^{*}$, if $a b=a c$, then $b=c$, and if $a c=b c$, then $a=b$.

Equivalence Relations and Quotient Sets

Given a binary relation R on a set A it is often more suggestive to write $a R b$ instead of $(a, b) \in R$.

Definition. An equivalence relation on a set A is a binary relation \sim on A such that for all $a, b, c \in A$:
(i) $a \sim a$ (reflexivity);
(ii) $a \sim b$ implies $b \sim a$ (symmetry);
(iii) ($a \sim b$ and $b \sim c$) implies $a \sim c$ (transitivity).

Example. Given any n we have the equivalence relation "congruence modulo n " on \mathbf{Z} defined as follows: for any $a, b \in \mathbf{Z}$ we have

$$
a \equiv b \quad \bmod n \Longleftrightarrow a-b=n c \text { for some } c \in \mathbf{Z}
$$

For $n=0$ this is just equality on \mathbf{Z}.
Let \sim be an equivalence relation on the set A. The equivalence class a^{\sim} of an element $a \in A$ is defined by $a^{\sim}=\{b \in A: a \sim b\}$ (a subset of A). For $a, b \in A$ we have $a^{\sim}=b^{\sim}$ if and only if $a \sim b$, and $a^{\sim} \cap b^{\sim}=\emptyset$ if and only if $a \nsim b$. The quotient set of $A b y \sim$ is by definition the set of equivalence classes:

$$
A / \sim=\left\{a^{\sim}: a \in A\right\}
$$

This quotient set is a partition of A, that is, it is a collection of pairwise disjoint nonempty subsets of A whose union is A. (Collection is a synonym for set; we use it here because we don't like to say "set of ... subsets ...".) Every partition
of A is the quotient set A / \sim for a unique equivalence relation \sim on A. Thus equivalence relations on A and partitions of A are just different ways to describe the same situation.

In the previous example (congruence modulo n) the equivalence classes are called congruence classes modulo n (or residue classes modulo n) and the corresponding quotient set is often denoted $\mathbf{Z} / n \mathbf{Z}$.

Remark. Readers familiar with some abstract algebra will note that the construction in the example above is a special case of a more general constructionthat of a quotient of a group with respect to a normal subgroup.

Posets

A partially ordered set (short: poset) is a pair (P, \leq) consisting of a set P and a partial ordering \leq on P, that is, \leq is a binary relation on P such that for all $p, q, r \in P$:
(i) $p \leq p$ (reflexivity);
(ii) if $p \leq q$ and $q \leq p$, then $p=q$ (antisymmetry);
(iii) if $p \leq q$ and $q \leq r$, then $p \leq r$ (transitivity).

If in addition we have for all $p, q \in P$,
(iv) $p \leq q$ or $q \leq p$,
then we say that \leq is a linear order on P, or that (P, \leq) is a linearly ordered set. ${ }^{6}$ Each of the sets $\mathbf{N}, \mathbf{Z}, \mathbf{Q}, \mathbf{R}$ comes with its familiar linear order on it.

As an example, take any set A and its collection $\mathcal{P}(A)$ of subsets. Then

$$
X \leq Y: \Longleftrightarrow X \subseteq Y \quad(\text { for subsets } X, Y \text { of } A)
$$

defines a poset $(\mathcal{P}(A), \leq)$, also referred to as the power set of A ordered by inclusion. This is not a linearly ordered set if A has more than one element.
Finite linearly ordered sets are determined "up to unique isomorphism" by their size: if (P, \leq) is a linearly ordered set and $|P|=n$, then there is a unique map $\iota: P \rightarrow\{1, \ldots, n\}$ such that for all $p, q \in P$ we have: $p \leq q \Longleftrightarrow \iota(p) \leq \iota(q)$. This map ι is a bijection.

Let (P, \leq) be a poset. Here is some useful notation. For $x, y \in P$ we set

$$
\begin{aligned}
& x \geq y: \Longleftrightarrow y \leq x \\
& x<y: \Longleftrightarrow y>x: \Longleftrightarrow x \leq y \text { and } x \neq y
\end{aligned}
$$

Note that (P, \geq) is also a poset. A least element of P is a $p \in P$ such that $p \leq x$ for all $x \in P$; a largest element of P is defined likewise, with \geq instead of \leq.

[^4]Of course, P can have at most one least element; therefore we can refer to the least element of P, if P has a least element; likewise, we can refer to the largest element of P, if P has a largest element.

A minimal element of P is a $p \in P$ such that there is no $x \in P$ with $x<p$; a maximal element of P is defined likewise, with $>$ instead of $<$. If P has a least element, then this element is also the unique minimal element of P; some posets, however, have more than one minimal element. The reader might want to prove the following result to get a feeling for these notions:

If P is finite and nonempty, then P has a maximal element, and there is a linear order \leq^{\prime} on P that extends \leq in the sense that

$$
p \leq q \Longrightarrow p \leq^{\prime} q, \quad \text { for all } p, q \in P
$$

(Hint: use induction on $|P|$.)
Let $X \subseteq P$. A lowerbound (respectively, upperbound) of X in P is an element $l \in$ P (respectively, an element $u \in P$), such that $l \leq x$ for all $x \in X$ (respectively, $x \leq u$ for all $x \in X)$.

We often tacitly consider X as a poset in its own right, by restricting the given partial ordering of P to X. More precisely this means that we consider the poset $\left(X, \leq_{X}\right)$ where the partial ordering \leq_{X} on X is defined by

$$
x \leq_{X} y \Longleftrightarrow x \leq y \quad(x, y \in X)
$$

Thus we can speak of least, largest, minimal, and maximal elements of a set $X \subseteq P$, when the ambient poset (P, \leq) is clear from the context. For example, when X is the collection of nonempty subsets of a set A and X is ordered by inclusion, then the minimal elements of X are the singletons $\{a\}$ with $a \in A$.

We call X a chain in P if $\left(X, \leq_{X}\right)$ is linearly ordered.
Occasionally we shall use the following fact about posets (P, \leq).
Zorn's Lemma. Suppose P is nonempty and every nonempty chain in P has an upperbound in P. Then P has a maximal element.

For a further discussion of Zorn's Lemma and its proof using the Axiom of Choice we refer the reader to Halmos's book on set theory.

Chapter 2

Basic Concepts of Logic

2.1 Propositional Logic

Propositional logic is the fragment of logic where new statements are built from given statements using so-called connectives like "not", "or" and "and". The truth value of such a new statement is then completely determined by the truth values of the given statements. Thus, given any statements p and q, we can form the three statements

$$
\begin{aligned}
\neg p & \text { (the negation of } p, \text { pronounced as "not } p \text { "), } \\
p \vee q & \text { (the disjunction of } p \text { and } q, \text { pronounced as " } p \text { or } q \text { "), } \\
p \wedge q & \text { (the conjunction of } p \text { and } q, \text { pronounced as " } p \text { and } q \text { "). }
\end{aligned}
$$

This leads to more complicated combinations like $\neg(p \wedge(\neg q))$. We shall regard $\neg p$ as true if and only if p is not true; also, $p \vee q$ is defined to be true if and only if p is true or q is true (including the possibility that both are true), and $p \wedge q$ is deemed to be true if and only if p is true and q is true. Instead of "not true" we also say "false". We now introduce a formalism that makes this into mathematics.

We start with the five distinct symbols

$$
\top \quad \perp \quad \neg \quad \vee \quad \wedge
$$

to be thought of as true, false, not, or, and and, respectively. These symbols are fixed throughout the course, and are called propositional connectives. In this section we also fix a set A whose elements will be called propositional atoms (or just atoms), such that no propositional connective is an atom. It may help the reader to think of an atom a as a variable for which we can substitute arbitrary statements, assumed to be either true or false.

A proposition on A is a word on the alphabet $A \cup\{\top, \perp, \neg, \vee, \wedge\}$ that can be obtained by applying the following rules:
(i) each atom $a \in A$ (viewed as a word of length 1) is a proposition on A;
(ii) \top and \perp (viewed as words of length 1) are propositions on A;
(iii) if p and q are propositions on A, then the concatenations $\neg p, \vee p q$ and $\wedge p q$ are propositions on A.
For the rest of this section "proposition" means "proposition on A ", and p, q, r (sometimes with subscripts) will denote propositions.

Example. Suppose a, b, c are atoms. Then $\wedge \vee \neg a b \neg c$ is a proposition. This follows from the rules above: a is a proposition, so $\neg a$ is a proposition, hence $\vee \neg a b$ as well; also $\neg c$ is a proposition, and thus $\wedge \vee \neg a b \neg c$ is a proposition.

We defined "proposition" using the suggestive but vague phrase "can be obtained by applying the following rules". The reader should take such an informal description as shorthand for a completely explicit definition, which in the case at hand is as follows:
A proposition is a word w on the alphabet $A \cup\{\top, \perp, \neg, \vee, \wedge\}$ for which there is a sequence w_{1}, \ldots, w_{n} of words on that same alphabet, with $n \geq 1$, such that $w=w_{n}$ and for each $k \in\{1, \ldots, n\}$, either $w_{k} \in A \cup\{\top, \perp\}$ (where each element in the last set is viewed as a word of length 1), or there are $i, j \in\{1, \ldots, k-1\}$ such that w_{k} is one of the concatenations $\neg w_{i}, \vee w_{i} w_{j}, \wedge w_{i} w_{j}$.

We let $\operatorname{Prop}(A)$ denote the set of propositions.
Remark. Having the connectives \vee and \wedge in front of the propositions they "connect" rather than in between, is called prefix notation or Polish notation. This is theoretically elegant, but for the sake of readability we usually write $p \vee q$ and $p \wedge q$ to denote $\vee p q$ and $\wedge p q$ respectively, and we also use parentheses and brackets if this helps to clarify the structure of a proposition. So the proposition in the example above could be denoted by $[(\neg a) \vee b] \wedge(\neg c)$, or even by $(\neg a \vee b) \wedge \neg c$ since we shall agree that \neg binds stronger than \vee and \wedge in this informal way of indicating propositions. Because of the informal nature of these conventions, we don't have to give precise rules for their use; it's enough that each actual use is clear to the reader.

The intended structure of a proposition-how we think of it as built up from atoms via connectives-is best exhibited in the form of a tree, a twodimensional array, rather than as a one-dimensional string. Such trees, however, occupy valuable space on the printed page, and are typographically demanding. Fortunately, our "official" prefix notation does uniquely determine the intended structure of a proposition: that is what the next lemma amounts to.

Lemma 2.1.1 (Unique Readability). If p has length 1, then either $p=\top$, or $p=\perp$, or p is an atom. If p has length >1, then its first symbol is either \neg, or \vee, or \wedge. If the first symbol of p is \neg, then $p=\neg q$ for a unique q. If the first symbol of p is \vee, then $p=\vee q r$ for a unique pair (q, r). If the first symbol of p is \wedge, then $p=\wedge q r$ for a unique pair (q, r).
(Note that we used here our convention that p, q, r denote propositions.) Only the last two claims are worth proving in print, the others should require only
a moment's thought. For now we shall assume this lemma without proof. At the end of this section we establish more general results of this kind which are needed also later in the course.

Remark. Rather than thinking of a proposition as a statement, it's better viewed as a function whose arguments and values are statements: replacing the atoms in a proposition by specific mathematical statements like " $2 \times 2=4$ ", " $\pi^{2}<7$ ", and "every even integer >2 is the sum of two prime numbers", we obtain again a mathematical statement.
We shall use the following notational conventions: $p \rightarrow q$ denotes $\neg p \vee q$, and $p \leftrightarrow q$ denotes $(p \rightarrow q) \wedge(q \rightarrow p)$. By recursion on n we define

$$
p_{1} \vee \ldots \vee p_{n}= \begin{cases}\perp & \text { if } n=0 \\ p_{1} & \text { if } n=1 \\ p_{1} \vee p_{2} & \text { if } n=2 \\ \left(p_{1} \vee \ldots \vee p_{n-1}\right) \vee p_{n} & \text { if } n>2\end{cases}
$$

Thus $p \vee q \vee r$ stands for $(p \vee q) \vee r$. We call $p_{1} \vee \ldots \vee p_{n}$ the disjunction of p_{1}, \ldots, p_{n}. The reason that for $n=0$ we take this disjunction to be \perp is that we want a disjunction to be true iff (at least) one of the disjuncts is true.

Similarly, the conjunction $p_{1} \wedge \ldots \wedge p_{n}$ of p_{1}, \ldots, p_{n} is defined by replacing everywhere \vee by \wedge and \perp by \top in the definition of $p_{1} \vee \ldots \vee p_{n}$.

Definition. A truth assignment is a map $t: A \rightarrow\{0,1\}$. We extend such a t to $\hat{t}: \operatorname{Prop}(A) \rightarrow\{0,1\}$ by requiring
(i) $\hat{t}(T)=1, \quad \hat{t}(\perp)=0$,
(ii) $\hat{t}(\neg p)=1-\hat{t}(p)$,
(iii) $\hat{t}(p \vee q)=\max (\hat{t}(p), \hat{t}(q)), \quad \hat{t}(p \wedge q)=\min (\hat{t}(p), \hat{t}(q))$.

Note that there is exactly one such extension \hat{t} by unique readability. To simplify notation we often write t instead of \hat{t}. The array below is called a truth table. It shows on each row below the top row how the two leftmost entries $t(p)$ and $t(q)$ determine $t(\neg p), t(p \vee q), t(p \wedge q), t(p \rightarrow q)$ and $t(p \leftrightarrow q)$.

p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

Let $t: A \rightarrow\{0,1\}$. Note that $t(p \rightarrow q)=1$ if and only if $t(p) \leq t(q)$, and that $t(p \leftrightarrow q)=1$ if and only if $t(p)=t(q)$.

Suppose a_{1}, \ldots, a_{n} are the distinct atoms that occur in p, and we know how p is built up from those atoms. Then we can compute in a finite number of steps $t(p)$ from $t\left(a_{1}\right), \ldots, t\left(a_{n}\right)$. In particular, $t(p)=t^{\prime}(p)$ for any $t^{\prime}: A \rightarrow\{0,1\}$ such that $t\left(a_{i}\right)=t^{\prime}\left(a_{i}\right)$ for $i=1, \ldots, n$.

Definition. We say that p is a tautology (notation: $\vDash p$) if $t(p)=1$ for all $t: A \rightarrow\{0,1\}$. We say that p is satisfiable if $t(p)=1$ for some $t: A \rightarrow\{0,1\}$.

Thus T is a tautology, and $p \vee \neg p, p \rightarrow(p \vee q)$ are tautologies for all p and q. By the remark preceding the definition one can verify whether any given p with exactly n distinct atoms in it is a tautology by computing 2^{n} numbers and checking that these numbers all come out 1. (To do this accurately by hand is already cumbersome for $n=5$, but computers can handle somewhat larger n. Fortunately, other methods are often efficient for special cases.)
Remark. Note that $\vDash p \leftrightarrow q$ iff $t(p)=t(q)$ for all $t: A \rightarrow\{0,1\}$. We call p equivalent to q if $\models p \leftrightarrow q$. Note that "equivalent to" defines an equivalence relation on $\operatorname{Prop}(A)$. The lemma below gives a useful list of equivalences. We leave it to the reader to verify them.

Lemma 2.1.2. For all p, q, r we have the following equivalences:

$$
\begin{array}{ll}
\equiv(p \vee p) \leftrightarrow p, & \models(p \wedge p) \leftrightarrow p, \tag{1}\\
=(p \vee q) \leftrightarrow(q \vee p), & \models(p \wedge q) \leftrightarrow(q \wedge p), \\
=(p \vee(q \vee r)) \leftrightarrow(p \vee q) \vee r), & \models(p \wedge(q \wedge r)) \leftrightarrow((p \wedge q) \wedge r), \\
=(p \vee(q \wedge r)) \leftrightarrow(p \vee q) \wedge(p \vee r), & \models(p \wedge(q \vee r)) \leftrightarrow(p \wedge q) \vee(p \wedge r), \\
=(p \vee(p \wedge q)) \leftrightarrow p, & \models(p \wedge(p \vee q)) \leftrightarrow p, \\
=(\neg(p \vee q)) \leftrightarrow(\neg p \wedge \neg q), & \models(\neg(p \wedge q)) \leftrightarrow(\neg p \vee \neg q), \\
=(p \vee \neg p) \leftrightarrow \top, & \\
& \models(p \wedge \neg p) \leftrightarrow \perp, \\
& \models \neg \neg p \leftrightarrow p .
\end{array}
$$

Items (1), (2), (3), (4), (5), and (6) are often referred to as the idempotent law, commutativity, associativity, distributivity, the absorption law, and the De Morgan law, respectively. Note the left-right symmetry in (1)-(7) : the so-called duality of propositional logic. We shall return to this issue in the more algebraic setting of boolean algebras.

Some notation: let $\left(p_{i}\right)_{i \in I}$ be a family of propositions with finite index set I, choose a bijection $k \mapsto i(k):\{1, \ldots, n\} \rightarrow I$ and set

$$
\bigvee_{i \in I} p_{i}:=p_{i(1)} \vee \cdots \vee p_{i(n)}, \quad \bigwedge_{i \in I} p_{i}:=p_{i(1)} \wedge \cdots \wedge p_{i(n)}
$$

If I is clear from context we just write $\bigvee_{i} p_{i}$ and $\bigwedge_{i} p_{i}$ instead. Of course, the notations $\bigvee_{i \in I} p_{i}$ and $\bigwedge_{i \in I} p_{i}$ can only be used when the particular choice of bijection of $\{1, \ldots, n\}$ with I does not matter; this is usually the case, because the equivalence class of $p_{i(1)} \vee \cdots \vee p_{i(n)}$ does not depend on this choice, and the same is true for the equivalence class of $p_{i(1)} \wedge \cdots \wedge p_{i(n)}$.

Next we define "model of Σ " and "tautological consequence of Σ ".
Definition. Let $\Sigma \subseteq \operatorname{Prop}(A)$. By a model of Σ we mean a truth assignment $t: A \rightarrow\{0,1\}$ such that $t(p)=1$ for all $p \in \Sigma$. We say that a proposition p is a tautological consequence of Σ (written $\Sigma \models p$) if $t(p)=1$ for every model t of Σ. Note that $\models p$ is the same as $\emptyset \models p$.

Lemma 2.1.3. Let $\Sigma \subseteq \operatorname{Prop}(A)$ and $p, q \in \operatorname{Prop}(A)$. Then
(1) $\Sigma \models p \wedge q \Longleftrightarrow \Sigma \models p$ and $\Sigma \models q$,
(2) $\Sigma \models p \Longrightarrow \Sigma \models p \vee q$,
(3) $\Sigma \cup\{p\} \models q \Longleftrightarrow \Sigma \mid=p \rightarrow q$,
(4) if $\Sigma \models p$ and $\Sigma \models p \rightarrow q$, then $\Sigma \models q$ (Modus Ponens).

Proof. We will prove (3) here and leave the rest as exercise.
(\Rightarrow) Assume $\Sigma \cup\{p\} \models q$. To derive $\Sigma \vDash p \rightarrow q$ we consider any model $t: A \longrightarrow\{0,1\}$ of Σ, and need only show that then $t(p \rightarrow q)=1$. If $t(p)=1$ then $t(\Sigma \cup\{p\}) \subseteq\{1\}$, hence $t(q)=1$ and thus $t(p \rightarrow q)=1$. If $t(p)=0$ then $t(p \rightarrow q)=1$ by definition.
(\Leftarrow) Assume $\Sigma \models p \rightarrow q$. To derive $\Sigma \cup\{p\} \vDash q$ we consider any model $t: A \longrightarrow\{0,1\}$ of $\Sigma \cup\{p\}$, and need only derive that $t(q)=1$. By assumption $t(p \rightarrow q)=1$ and in view of $t(p)=1$, this gives $t(q)=1$ as required.

We finish this section with the promised general result on unique readability. We also establish facts of similar nature that are needed later.
Definition. Let F be a set of symbols with a function $a: F \rightarrow \mathbf{N}$ (called the arity function). A symbol $f \in F$ is said to have arity n if $a(f)=n$. A word on F is said to be admissible if it can be obtained by applying the following rules:
(i) If $f \in F$ has arity 0 , then f viewed as a word of length 1 is admissible.
(ii) If $f \in F$ has arity $m>0$ and t_{1}, \ldots, t_{m} are admissible words on F, then the concatenation $f t_{1} \ldots t_{m}$ is admissible.
Below we just write "admissible word" instead of "admissible word on F". Note that the empty word is not admissible, and that the last symbol of an admissible word cannot be of arity >0.
Example. Take $F=A \cup\{\top, \perp, \neg, \vee, \wedge\}$ and define arity : $F \rightarrow \mathbf{N}$ by

$$
\operatorname{arity}(x)=0 \text { for } x \in A \cup\{\top, \perp\}, \quad \operatorname{arity}(\neg)=1, \quad \operatorname{arity}(\vee)=\operatorname{arity}(\wedge)=2
$$

Then the set of admissible words is just $\operatorname{Prop}(A)$.
Lemma 2.1.4. Let t_{1}, \ldots, t_{m} and u_{1}, \ldots, u_{n} be admissible words and w any word on F such that $t_{1} \ldots t_{m} w=u_{1} \ldots u_{n}$. Then $m \leq n, t_{i}=u_{i}$ for $i=$ $1, \ldots, m$, and $w=u_{m+1} \cdots u_{n}$.
Proof. By induction on the length of $u_{1} \ldots u_{n}$. If this length is 0 , then $m=n=$ 0 and w is the empty word. Suppose the length is >0, and assume the lemma holds for smaller lengths. Note that $n>0$. If $m=0$, then the conclusion of the lemma holds, so suppose $m>0$. The first symbol of t_{1} equals the first symbol of u_{1}. Say this first symbol is $h \in F$ with arity k. Then $t_{1}=h a_{1} \ldots a_{k}$ and $u_{1}=h b_{1} \ldots b_{k}$ where a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k} are admissible words. Cancelling the first symbol h gives

$$
a_{1} \ldots a_{k} t_{2} \ldots t_{m} w=b_{1} \ldots b_{k} u_{2} \ldots u_{n}
$$

(Caution: any of $k, m-1, n-1$ could be 0 .) We have length $\left(b_{1} \ldots b_{k} u_{2} \ldots u_{n}\right)=$ length $\left(u_{1} \ldots u_{n}\right)-1$, so the induction hypothesis applies. It yields $k+m-1 \leq$ $k+n-1$ (so $m \leq n$), $a_{1}=b_{1}, \ldots, a_{k}=b_{k}\left(\right.$ so $\left.t_{1}=u_{1}\right), t_{2}=u_{2}, \ldots, t_{m}=u_{m}$, and $w=u_{m+1} \cdots u_{n}$.

Here are two immediate consequences that we shall use:

1. Let t_{1}, \ldots, t_{m} and u_{1}, \ldots, u_{n} be admissible words such that $t_{1} \ldots t_{m}=$ $u_{1} \ldots u_{n}$. Then $m=n$ and $t_{i}=u_{i}$ for $i=1, \ldots, m$.
2. Let t and u be admissible words and w a word on F such that $t w=u$. Then $t=u$ and w is the empty word.

Lemma 2.1.5 (Unique Readability).

Each admissible word equals $f t_{1} \ldots t_{m}$ for a unique tuple $\left(f, t_{1}, \ldots, t_{m}\right)$ where $f \in F$ has arity m and t_{1}, \ldots, t_{m} are admissible words.

Proof. Suppose $f t_{1} \ldots t_{m}=g u_{1} \ldots u_{n}$ where $f, g \in F$ have arity m and n respectively, and $t_{1}, \ldots, t_{m}, u_{1}, \ldots, u_{n}$ are admissible words on F. We have to show that then $f=g, m=n$ and $t_{i}=u_{i}$ for $i=1, \ldots, m$. Observe first that $f=g$ since f and g are the first symbols of two equal words. After cancelling the first symbol of both words, the first consequence of the previous lemma leads to the desired conclusion.

Given words $v, w \in F^{*}$ and $i \in\{1, \ldots, \operatorname{length}(w)\}$, we say that v occurs in w at starting position i if $w=w_{1} v w_{2}$ where $w_{1}, w_{2} \in F^{*}$ and w_{1} has length $i-1$. (For example, if $f, g \in F$ are distinct, then the word $f g f$ has exactly two occurrences in the word $f g f g f$, one at starting position 1 , and the other at starting position 3 ; these two occurrences overlap, but such overlapping is impossible with admissible words, see exercise 5 at the end of this section.) Given $w=w_{1} v w_{2}$ as above, and given $v^{\prime} \in F^{*}$, the result of replacing v in w at starting position i by v^{\prime} is by definition the word $w_{1} v^{\prime} w_{2}$.

Lemma 2.1.6. Let w be an admissible word and $1 \leq i \leq \operatorname{length}(w)$. Then there is a unique admissible word that occurs in w at starting position i.

Proof. We prove existence by induction on length (w). Uniqueness then follows from the fact stated just before Lemma 2.1.5. Clearly w is an admissible word occurring in w at starting position 1. Suppose $i>1$. Then we write $w=$ $f t_{1} \ldots t_{n}$ where $f \in F$ has arity $n>0$, and t_{1}, \ldots, t_{n} are admissible words, and we take $j \in\{1, \ldots, n\}$ such that

$$
1+\text { length }\left(t_{1}\right)+\cdots+\text { length }\left(t_{j-1}\right)<i \leq 1+\operatorname{length}\left(t_{1}\right)+\cdots+\text { length }\left(t_{j}\right)
$$

Now apply the inductive assumption to t_{j}.
Remark. Let $w=f t_{1} \ldots t_{n}$ where $f \in F$ has arity $n>0$, and t_{1}, \ldots, t_{n} are admissible words. Put $l_{j}:=1+$ length $\left(t_{1}\right)+\cdots+$ length $\left(t_{j}\right)$ for $j=0, \ldots, n$ (so $l_{0}=1$). Suppose $l_{j-1}<i \leq l_{j}, 1 \leq j \leq n$, and let v be the admissible word that occurs in w at starting position i. Then the proof of the last lemma shows that this occurrence is entirely inside t_{j}, that is, $i-1+\operatorname{length}(v) \leq l_{j}$.

Corollary 2.1.7. Let w be an admissible word and $1 \leq i \leq \operatorname{length}(w)$. Then the result of replacing the admissible word v in w at starting position i by an admissible word v^{\prime} is again an admissible word.

This follows by a routine induction on length (w), using the last remark.

Exercises. In the exercises below, $A=\left\{a_{1}, \ldots, a_{n}\right\},|A|=n$.
(1) (Disjunctive Normal Form) Each p is equivalent to a disjunction

$$
p_{1} \vee \cdots \vee p_{k}
$$

where each disjunct p_{i} is a conjunction $a_{1}^{\epsilon_{1}} \wedge \ldots \wedge a_{n}^{\epsilon_{n}}$ with all $\epsilon_{j} \in\{-1,1\}$ and where for an atom a we put $a^{1}:=a$ and $a^{-1}:=\neg a$.
(2) (Conjunctive Normal Form) Same as last problem, except that the signs \vee and \wedge are interchanged, as well as the words "disjunction" and "conjunction," and also the words "disjunct" and "conjunct."
(3) To each p associate the function $f_{p}:\{0,1\}^{A} \rightarrow\{0,1\}$ defined by $f_{p}(t)=t(p)$. (Think of a truth table for p where the 2^{n} rows correspond to the 2^{n} truth assignments $t: A \rightarrow\{0,1\}$, and the column under p records the values $t(p)$.) Then for every function $f:\{0,1\}^{A} \rightarrow\{0,1\}$ there is a p such that $f=f_{p}$.
(4) Let \sim be the equivalence relation on $\operatorname{Prop}(A)$ given by

$$
p \sim q: \Longleftrightarrow \models p \leftrightarrow q
$$

Then the quotient set $\operatorname{Prop}(A) / \sim$ is finite; determine its cardinality as a function of $n=|A|$.
(5) Let w be an admissible word and $1 \leq i<i^{\prime} \leq \operatorname{length}(w)$. Let v and v^{\prime} be the admissible words that occur at starting positions i and i^{\prime} respectively in w. Then these occurrences are either nonoverlapping, that is, $i-1+\operatorname{length}(v)<i^{\prime}$, or the occurrence of v^{\prime} is entirely inside that of v, that is,

$$
i^{\prime}-1+\text { length }\left(v^{\prime}\right) \leq i-1+\text { length }(v)
$$

2.2 Completeness for Propositional Logic

In this section we introduce a proof system for propositional logic, state the completeness of this proof system, and then prove this completeness.

As in the previous section we fix a set A of atoms, and the conventions of that section remain in force.
A propositional axiom is by definition a proposition that occurs in the list below, for some choice of p, q, r :

1. \top
2. $p \rightarrow(p \vee q) ; \quad p \rightarrow(q \vee p)$
3. $\neg p \rightarrow(\neg q \rightarrow \neg(p \vee q))$
4. $(p \wedge q) \rightarrow p ; \quad(p \wedge q) \rightarrow q$
5. $p \rightarrow(q \rightarrow(p \wedge q))$
6. $(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))$
7. $p \rightarrow(\neg p \rightarrow \perp)$
8. $(\neg p \rightarrow \perp) \rightarrow p$

Each of items 2-8 describes infinitely many propositional axioms. That is why we do not call these items axioms, but axiom schemes. For example, if $a, b \in A$, then $a \rightarrow(a \vee \perp)$ and $b \rightarrow(b \vee(\neg a \wedge \neg b))$ are distinct propositional axioms, and both instances of axiom scheme 2. It is easy to check that all propositional axioms are tautologies.

Here is our single rule of inference for propositional logic:
Modus Ponens (MP): from p and $p \rightarrow q$, infer q.
In the rest of this section Σ denotes a set of propositions, that is, $\Sigma \subseteq \operatorname{Prop}(A)$.
Definition. A formal proof, or just proof, of p from Σ is a sequence p_{1}, \ldots, p_{n} with $n \geq 1$ and $p_{n}=p$, such that for $k=1, \ldots, n$:
(i) either $p_{k} \in \Sigma$,
(ii) or p_{k} is a propositional axiom,
(iii) or there are $i, j \in\{1, \ldots, k-1\}$ such that p_{k} can be inferred from p_{i} and p_{j} by MP.
If there exists a proof of p from Σ, then we write $\Sigma \vdash p$, and say Σ proves p. For $\Sigma=\emptyset$ we also write $\vdash p$ instead of $\Sigma \vdash p$.

Lemma 2.2.1. $\vdash p \rightarrow p$.
Proof. The proposition $p \rightarrow((p \rightarrow p) \rightarrow p)$ is a propositional axiom by axiom scheme 2. By axiom scheme 6,

$$
\{p \rightarrow((p \rightarrow p) \rightarrow p)\} \rightarrow\{(p \rightarrow(p \rightarrow p)) \rightarrow(p \rightarrow p)\}
$$

is a propositional axiom. Applying MP to these two axioms yields

$$
\vdash(p \rightarrow(p \rightarrow p)) \rightarrow(p \rightarrow p) .
$$

Since $p \rightarrow(p \rightarrow p)$ is also a propositional axiom by scheme 2 , we can apply MP again to obtain $\vdash p \rightarrow p$.

The next result shows that our proof system is sound, to use a term that is often used in this connection. For the straightforward proof, use that propositional axioms are tautologies, and use part (4) of Lemma 2.1.3.

Proposition 2.2.2. If $\Sigma \vdash p$, then $\Sigma \models p$.
The converse is true but less obvious. In other words:
Theorem 2.2.3 (Completeness - first form).

$$
\Sigma \vdash p \Longleftrightarrow \Sigma \models p
$$

There is some arbitrariness in our choice of axioms and rule, and thus in our notion of formal proof. This is in contrast to the definition of \vDash, which merely formalizes the underlying idea of propositional logic as stated in the introduction to the previous section. However, the equivalence of \vdash and \models (Completeness Theorem) means that our choice of axioms and rule gives a complete proof system. Moreover, this equivalence has consequences which can be stated in terms of \vDash alone. An example is the Compactness Theorem:

Theorem 2.2.4 (Compactness of Propositional Logic). If $\Sigma \models p$, then there is a finite subset Σ_{0} of Σ such that $\Sigma_{0} \models p$.

It is convenient to prove first a variant of the Completeness Theorem.
Definition. We say that Σ is inconsistent if $\Sigma \vdash \perp$, and otherwise (that is, if $\Sigma \nvdash \perp)$ we call Σ consistent.

Theorem 2.2.5 (Completeness - second form).
Σ is consistent if and only if Σ has a model.
From this second form of the Completenenes Theorem we obtain easily an alternative form of the Compactness of Propositional Logic:

Corollary 2.2.6. Σ has a model \Longleftrightarrow every finite subset of Σ has a model.
We first show that the second form of the Completeness Theorem implies the first form. For this we need a lemma that will also be useful later in the course. It says that " \rightarrow " behaves indeed as one might hope.

Lemma 2.2.7 (Deduction Lemma). Suppose $\Sigma \cup\{p\} \vdash q$. Then $\Sigma \vdash p \rightarrow q$.
Proof. By induction on (formal) proofs from $\Sigma \cup\{p\}$.
If q is a propositional axiom, then $\Sigma \vdash q$, and since $q \rightarrow(p \rightarrow q)$ is a propositional axiom, MP yields $\Sigma \vdash p \rightarrow q$. If $q \in \Sigma \cup\{p\}$, then either $q \in \Sigma$ in which case the same argument as before gives $\Sigma \vdash p \rightarrow q$, or $q=p$ and then $\Sigma \vdash p \rightarrow q$ since $\vdash p \rightarrow p$ by the lemma above.

Now assume that q is obtained by MP from r and $r \rightarrow q$, where $\Sigma \cup\{p\} \vdash r$ and $\Sigma \cup\{p\} \vdash r \rightarrow q$ and where we assume inductively that $\Sigma \vdash p \rightarrow r$ and $\Sigma \vdash p \rightarrow(r \rightarrow q)$. Then we obtain $\Sigma \vdash p \rightarrow q$ from the propositional axiom

$$
(p \rightarrow(r \rightarrow q)) \rightarrow((p \rightarrow r) \rightarrow(p \rightarrow q))
$$

by applying MP twice.
Corollary 2.2.8. $\Sigma \vdash p$ if and only if $\Sigma \cup\{\neg p\}$ is inconsistent.
Proof. (\Rightarrow) Assume $\Sigma \vdash p$. Since $p \rightarrow(\neg p \rightarrow \perp)$ is a propositional axiom, we can apply MP twice to get $\Sigma \cup\{\neg p\} \vdash \perp$. Hence $\Sigma \cup\{\neg p\}$ is inconsistent.
(\Leftarrow) Assume $\Sigma \cup\{\neg p\}$ is inconsistent. Then $\Sigma \cup\{\neg p\} \vdash \perp$, and so by the Deduction Lemma we have $\Sigma \vdash \neg p \rightarrow \perp$. Since $(\neg p \rightarrow \perp) \rightarrow p$ is a propositional axiom, MP yields $\Sigma \vdash p$.

We leave the proof of the next result as an exercise.
Corollary 2.2.9. If Σ is consistent and $\Sigma \vdash p$, then $\Sigma \cup\{p\}$ is consistent.
Corollary 2.2.10. The second form of Completeness (Theorem 2.2.5) implies the first form (Theorem 2.2.3).
Proof. Assume the second form of Completeness holds, and that $\Sigma \vDash p$. We want to show that then $\Sigma \vdash p$. From $\Sigma \vDash p$ it follows that $\Sigma \cup\{\neg p\}$ has no model. Hence by the second form of Completeness, the set $\Sigma \cup\{\neg p\}$ is inconsistent. Then by Corollary 2.2 .8 we have $\Sigma \vdash p$.

Definition. We say that Σ is complete if Σ is consistent, and for each p either $\Sigma \vdash p$ or $\Sigma \vdash \neg p$.
Completeness as a property of a set of propositions should not be confused with the completeness of our proof system as expressed by the Completeness Theorem. (It is just a historical accident that we use the same word.)

Below we use Zorn's Lemma to show that any consistent set of propositions can be extended to a complete set of propositions.

Lemma 2.2.11 (Lindenbaum). Suppose Σ is consistent. Then $\Sigma \subseteq \Sigma^{\prime}$ for some complete $\Sigma^{\prime} \subseteq \operatorname{Prop}(A)$.
Proof. Let P be the collection of all consistent subsets of $\operatorname{Prop}(A)$ that contain Σ. In particular $\Sigma \in P$. We consider P as partially ordered by inclusion. Any totally ordered subcollection $\left\{\Sigma_{i}: i \in I\right\}$ of P with $I \neq \emptyset$ has an upper bound in P, namely $\bigcup\left\{\Sigma_{i}: i \in I\right\}$. (To see this it suffices to check that $\bigcup\left\{\Sigma_{i}: i \in I\right\}$ is consistent. Suppose otherwise, that is, suppose $\bigcup\left\{\Sigma_{i}: i \in I\right\} \vdash \perp$. Since a proof can use only finitely many of the axioms in $\bigcup\left\{\Sigma_{i}: i \in I\right\}$, there exists $i \in I$ such that $\Sigma_{i} \vdash \perp$, contradicting the consistency of Σ_{i}.)
Thus by Zorn's lemma P has a maximal element Σ^{\prime}. We claim that then Σ^{\prime} is complete. For any p, if $\Sigma^{\prime} \nvdash p$, then by Corollary 2.2.8 the set $\Sigma^{\prime} \cup\{\neg p\}$ is consistent, hence $\neg p \in \Sigma^{\prime}$ by maximality of Σ^{\prime}, and thus $\Sigma^{\prime} \vdash \neg p$.

Suppose A is countable. For this case we can give a proof of Lindenbaum's Lemma without using Zorn's Lemma as follows.

Proof. Because A is countable, $\operatorname{Prop}(A)$ is countable. Take an enumeration $\left(p_{n}\right)_{n \in \mathbb{N}}$ of $\operatorname{Prop}(A)$. We construct an increasing sequence $\Sigma=\Sigma_{0} \subseteq \Sigma_{1} \subseteq \ldots$ of consistent subsets of $\operatorname{Prop}(A)$ as follows. Given a consistent $\Sigma_{n} \subseteq \operatorname{Prop}(A)$ we define

$$
\Sigma_{n+1}= \begin{cases}\Sigma_{n} \cup\left\{p_{n}\right\} & \text { if } \Sigma_{n} \vdash p_{n}, \\ \Sigma_{n} \cup\left\{\neg p_{n}\right\} & \text { if } \Sigma_{n} \nvdash p_{n},\end{cases}
$$

so Σ_{n+1} remains consistent by Corollaries 2.2.8 and 2.2.9. Thus

$$
\Sigma_{\infty}:=\bigcup\left\{\Sigma_{n}: n \in \mathbf{N}\right\}
$$

is consistent and also complete: for any n either $p_{n} \in \Sigma_{n+1} \subseteq \Sigma_{\infty}$ or $\neg p_{n} \in$ $\Sigma_{n+1} \subseteq \Sigma_{\infty}$.

Define the truth assignment $t_{\Sigma}: A \rightarrow\{0,1\}$ by

$$
t_{\Sigma}(a)=1 \text { if } \Sigma \vdash a, \text { and } t_{\Sigma}(a)=0 \text { otherwise. }
$$

Lemma 2.2.12. Suppose Σ is complete. Then for each p we have

$$
\Sigma \vdash p \Longleftrightarrow t_{\Sigma}(p)=1
$$

In particular, t_{Σ} is a model of Σ.
Proof. We proceed by induction on the length of p. If p is an atom or $p=\top$ or $p=\perp$, then the equivalence follows immediately from the definitions. It remains to consider the three cases below.

Case 1: $p=\neg q$, and (inductive assumption) $\Sigma \vdash q \Longleftrightarrow t_{\Sigma}(q)=1$.
(\Rightarrow) Suppose $\Sigma \vdash p$. Then $t_{\Sigma}(p)=1$: Otherwise, $t_{\Sigma}(q)=1$, so $\Sigma \vdash q$ by the inductive assumption; since $q \rightarrow(p \rightarrow \perp)$ is a propositional axiom, we can apply MP twice to get $\Sigma \vdash \perp$, which contradicts the consistency of Σ.
(\Leftarrow) Suppose $t_{\Sigma}(p)=1$. Then $t_{\Sigma}(q)=0$, so $\Sigma \nvdash q$, and thus $\Sigma \vdash p$ by completeness of Σ.

Case 2: $p=q \vee r, \Sigma \vdash q \Longleftrightarrow t_{\Sigma}(q)=1$, and $\Sigma \vdash r \Longleftrightarrow t_{\Sigma}(r)=1$.
(\Rightarrow) Suppose that $\Sigma \vdash p$. Then $t_{\Sigma}(p)=1$: Otherwise, $t_{\Sigma}(p)=0$, so $t_{\Sigma}(q)=0$ and $t_{\Sigma}(r)=0$, hence $\Sigma \nvdash q$ and $\Sigma \nvdash r$, and thus $\Sigma \vdash \neg q$ and $\Sigma \vdash \neg r$ by completeness of Σ; since $\neg q \rightarrow(\neg r \rightarrow \neg p)$ is a propositional axiom, we can apply MP twice to get $\Sigma \vdash \neg p$, which in view of the propositional axiom $p \rightarrow(\neg p \rightarrow \perp)$ and MP yields $\Sigma \vdash \perp$, which contradicts the consistency of Σ.
(\Leftarrow) Suppose $t_{\Sigma}(p)=1$. Then $t_{\Sigma}(q)=1$ or $t_{\Sigma}(r)=1$. Hence $\Sigma \vdash q$ or $\Sigma \vdash r$. Using MP and the propositional axioms $q \rightarrow p$ and $r \rightarrow p$ we obtain $\Sigma \vdash p$.

Case 3: $p=q \wedge r, \Sigma \vdash q \Longleftrightarrow t_{\Sigma}(q)=1$, and $\Sigma \vdash r \Longleftrightarrow t_{\Sigma}(r)=1$.
We leave this case as an exercise.
We can now finish the proof of Completeness (second form):
Suppose Σ is consistent. Then by Lindenbaum's Lemma Σ is a subset of a complete set Σ^{\prime} of propositions. By the previous lemma, such a Σ^{\prime} has a model, and such a model is also a model of Σ.

The converse - if Σ has a model, then Σ is consistent-is left to the reader.
Application to coloring infinite graphs. What follows is a standard use of compactness of propositional logic, one of many. Let (V, E) be a graph, by which we mean here that V is a set (of vertices) and E (the set of edges) is a binary relation on V that is irreflexive and symmetric, that is, for all $v, w \in V$ we have $(v, v) \notin E$, and if $(v, w) \in E$, then $(w, v) \in E$. Let some $n \geq 1$ be given. Then an n-coloring of (V, E) is a function $c: V \rightarrow\{1, \ldots, n\}$ such that $c(v) \neq c(w)$ for all $(v, w) \in E$: neighboring vertices should have different colors.

Suppose for every finite $V_{0} \subseteq V$ there is an n-coloring of $\left(V_{0}, E_{0}\right)$, where $E_{0}:=E \cap\left(V_{0} \times V_{0}\right)$. We claim that there exists an n-coloring of (V, E).
Proof. Take $A:=V \times\{1, \ldots, n\}$ as the set of atoms, and think of an atom (v, i) as representing the statement that v has color i. Thus for (V, E) to have an
n-coloring means that the following set $\Sigma \subseteq \operatorname{Prop}(A)$ has a model:

$$
\begin{aligned}
\Sigma:=\{(v, 1) \vee \cdots \vee(v, n): v \in V\} & \cup\{\neg((v, i) \wedge(v, j)): v \in V, 1 \leq i<j \leq n\} \\
& \cup\{\neg((v, i) \wedge(w, i)):(v, w) \in E, 1 \leq i \leq n\} .
\end{aligned}
$$

The assumption that all finite subgraphs of (V, E) are n-colorable yields that every finite subset of Σ has a model. Hence by compactness Σ has a model.

Exercises.

(1) Let (P, \leq) be a poset. Then there is a linear order \leq 'on P that extends \leq. (Hint: use the compactness theorem and the fact that this is true when P is finite.)
(2) Suppose $\Sigma \subseteq \operatorname{Prop}(A)$ is such that for each truth assignment $t: A \rightarrow\{0,1\}$ there is $p \in \Sigma$ with $t(p)=1$. Then there are $p_{1}, \ldots, p_{n} \in \Sigma$ such that $p_{1} \vee \cdots \vee p_{n}$ is a tautology. (The interesting case is when A and Σ are infinite.)

2.3 Languages and Structures

Propositional Logic captures only one aspect of mathematical reasoning. We also need the capability to deal with predicates, variables, and the quantifiers "for all" and "there exists." We now begin setting up a framework for Predicate Logic (or First-Order Logic, FOL), which has these additional features and has a claim on being a complete logic for mathematical reasoning. This claim will be formulated later in this chapter as the Completeness Theorem and proved in the next chapter.

Definition. A language ${ }^{1} L$ is a disjoint union of:
(i) a set L^{r} of relation symbols; each $R \in L^{\mathrm{r}}$ has associated arity $a(R) \in \mathbf{N}$;
(ii) a set L^{f} of function symbols; each $F \in L^{\mathrm{f}}$ has associated arity $a(F) \in \mathbf{N}$.

An m-ary relation or function symbol is one that has arity m. Instead of " $0-$ ary", "1-ary", "2-ary" we say "nullary", "unary", "binary". A constant symbol is a function symbol of arity 0 .

In most cases the symbols of a language will be nullary, unary, or binary, but for good theoretical reasons we do not wish to exclude higher arities.

Examples.

(1) The language $L_{\mathrm{Gr}}=\left\{1,{ }^{-1}, \cdot\right\}$ of groups has constant symbol 1, unary function symbol ${ }^{-1}$, and binary function symbol \cdot.
(2) The language $L_{\mathrm{Ab}}=\{0,-,+\}$ of (additive) abelian groups has constant symbol 0 , unary function symbol -, and binary function symbol + .
(3) The language $L_{\mathrm{O}}=\{<\}$ has just one binary relation symbol $<$.
(4) The language $L_{\mathrm{OAb}}=\{<, 0,-,+\}$ of ordered abelian groups.
(5) The language $L_{\text {Rig }}=\{0,1,+, \cdot\}$ of rigs (or semirings) has constant symbols 0 and 1 , and binary function symbols + and •.

[^5](6) The language $L_{\text {Ring }}=\{0,1,-,+, \cdot\}$ of rings. The symbols are those of the previous example, plus the unary function symbol -.

From now on, let L denote a language.
Definition. A structure \mathcal{A} for L (or L-structure) is a triple

$$
\left(A ;\left(R^{\mathcal{A}}\right)_{R \in L^{\mathrm{r}}},\left(F^{\mathcal{A}}\right)_{F \in L^{\mathrm{f}}}\right)
$$

consisting of:
(i) a nonempty set A, the underlying set of $\mathcal{A} ;{ }^{2}$
(ii) for each m-ary $R \in L^{\mathrm{r}}$ a set $R^{\mathcal{A}} \subseteq A^{m}$ (an m-ary relation on A), the interpretation of R in \mathcal{A};
(iii) for each n-ary $F \in L^{\mathrm{f}}$ an operation $F^{\mathcal{A}}: A^{n} \longrightarrow A$ (an n-ary operation on $A)$, the interpretation of F in \mathcal{A}.

Remark. The interpretation of a constant symbol c of L is a function

$$
c^{\mathcal{A}}: A^{0} \longrightarrow A
$$

Since A^{0} has just one element, $c^{\mathcal{A}}$ is uniquely determined by its value at this element; we shall identify $c^{\mathcal{A}}$ with this value, so $c^{\mathcal{A}} \in A$.

Given an L-structure \mathcal{A}, the relations $R^{\mathcal{A}}$ on A (for $R \in L^{r}$), and operations $F^{\mathcal{A}}$ on A (for $F \in L^{f}$) are called the primitives of \mathcal{A}. When \mathcal{A} is clear from context we often omit the superscript \mathcal{A} in denoting the interpretation of a symbol of L in \mathcal{A}. The reader is supposed to keep in mind the distinction between symbols of L and their interpretation in an L-structure, even if we use the same notation for both.

Examples.

(1) Each group is considered as an L_{Gr}-structure by interpreting the symbols $1,{ }^{-1}$, and \cdot as the identity element of the group, its group inverse, and its group multiplication, respectively.
(2) Let $\mathcal{A}=(A ; 0,-,+)$ be an abelian group; here $0 \in A$ is the zero element of the group, and $-: A \rightarrow A$ and $+: A^{2} \rightarrow A$ denote the group operations of \mathcal{A}. We consider \mathcal{A} as an L_{Ab}-structure by taking as interpretations of the symbols $0,-$ and + of L_{Ab} the group operations $0,-$ and + on A. (We took here the liberty of using the same notation for possibly entirely different things: + is an element of the set L_{Ab}, but also denotes in this context its interpretation as a binary operation on the set A. Similarly with 0 and -.) In fact, any set A in which we single out an element, a unary operation on A, and a binary operation on A, can be construed as an L_{Ab}-structure if we choose to do so.
(3) $(\mathbf{N} ;<)$ is an L_{O}-structure where we interpret $<$ as the usual ordering relation on \mathbf{N}. Similarly for $(\mathbf{Z} ;<),(\mathbf{Q} ;<)$ and $(\mathbf{R} ;<)$. (Here we take

[^6]even more notational liberties, by letting $<$ denote five different things: a symbol of L_{O}, and the usual orderings of $\mathbf{N}, \mathbf{Z}, \mathbf{Q}$, and \mathbf{R} respectively.) Again, any nonempty set A equipped with a binary relation on it can be viewed as an L_{O}-structure.
(4) $(\mathbf{Z} ;<, 0,-,+)$ and $(\mathbf{Q} ;<, 0,-,+)$ are both L_{OAb}-structures.
(5) $(\mathbf{N} ; 0,1,+, \cdot)$ is an L_{Rig}-structure.
(6) $(\mathbf{Z} ; 0,1,-,+, \cdot)$ is an $L_{\text {Ring }}$-structure.

Let \mathcal{B} be an L-structure with underlying set B, and let A be a nonempty subset of B such that $F^{\mathcal{B}}\left(A^{n}\right) \subseteq A$ for every n and n-ary $F \in L^{\mathrm{f}}$. Then A is the underlying set of an L-structure \mathcal{A} defined by letting

$$
\begin{aligned}
& F^{\mathcal{A}}:=\left.F^{\mathcal{B}}\right|_{A^{n}}: A^{n} \rightarrow A, \quad \text { for } n \text {-ary } F \in L^{\mathrm{f}}, \\
& R^{\mathcal{A}}:=R^{\mathcal{B}} \cap A^{m} \quad \text { for } m \text {-ary } R \in L^{\mathrm{r}} .
\end{aligned}
$$

Definition. Such an L-structure \mathcal{A} is said to be a substructure of \mathcal{B}, notation: $\mathcal{A} \subseteq \mathcal{B}$. We also say in this case that \mathcal{B} is an extension of \mathcal{A}, or extends \mathcal{A}.

Examples.

(1) $(\mathbf{Z} ; 0,1,-,+, \cdot) \subseteq(\mathbf{Q} ; 0,1,-,+, \cdot) \subseteq(\mathbf{R} ; 0,1,-,+, \cdot)$
(2) $\quad(\mathbf{N} ;<, 0,1,+, \cdot) \subseteq(\mathbf{Z} ;<, 0,1,+, \cdot)$

Definition. Let $\mathcal{A}=(A ; \ldots)$ and $\mathcal{B}=(B ; \ldots)$ be L-structures.
A homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$ is a map $h: A \rightarrow B$ such that
(i) for each m-ary $R \in L^{\mathrm{r}}$ and each $\left(a_{1}, \ldots, a_{m}\right) \in A^{m}$ we have

$$
\left(a_{1}, \ldots, a_{m}\right) \in R^{\mathcal{A}} \Longrightarrow\left(h a_{1}, \ldots, h a_{m}\right) \in R^{\mathcal{B}}
$$

(ii) for each n-ary $F \in L^{\mathrm{f}}$ and each $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ we have

$$
h\left(F^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathcal{B}}\left(h a_{1}, \ldots, h a_{n}\right)
$$

Replacing \Longrightarrow in (i) by \Longleftrightarrow yields the notion of a strong homomorphism. An embedding is an injective strong homomorphism; an isomorphism is a bijective strong homomorphism. An automorphism of \mathcal{A} is an isomorphism $\mathcal{A} \rightarrow \mathcal{A}$.

If $\mathcal{A} \subseteq \mathcal{B}$, then the inclusion $a \mapsto a: A \rightarrow B$ is an embedding $\mathcal{A} \rightarrow \mathcal{B}$. Conversely, a homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$ yields a substructure $h(\mathcal{A})$ of \mathcal{B} with underlying set $h(A)$, and if h is an embedding we have an isomorphism

$$
a \mapsto h(a): \mathcal{A} \rightarrow h(\mathcal{A})
$$

If $i: \mathcal{A} \rightarrow \mathcal{B}$ and $j: \mathcal{B} \rightarrow \mathcal{C}$ are homomorphisms (strong homomorphisms, embeddings, isomorphisms, respectively), then so is $j \circ i: \mathcal{A} \rightarrow \mathcal{C}$. The identity $\operatorname{map} 1_{A}$ on A is an automorphism of \mathcal{A}. If $i: \mathcal{A} \rightarrow \mathcal{B}$ is an isomorphism then so is the map $i^{-1}: \mathcal{B} \rightarrow \mathcal{A}$. Thus the automorphisms of \mathcal{A} form a $\operatorname{group} \operatorname{Aut}(\mathcal{A})$ under composition with identity 1_{A}.

Examples.

1. Let $\mathcal{A}=(\mathbf{Z} ; 0,-,+)$. Then $k \mapsto-k$ is an automorphism of \mathcal{A}.
2. Let $\mathcal{A}=(\mathbf{Z} ;<)$. The map $k \mapsto k+1$ is an automorphism of \mathcal{A} with inverse given by $k \longmapsto k-1$.

If \mathcal{A} and \mathcal{B} are groups (viewed as structures for the language L_{Gr}), then a homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$ is exactly what in algebra is called a homomorphism from the group \mathcal{A} to the group \mathcal{B}. Likewise with rings, and other kinds of algebraic structures.
A congruence on the L-structure \mathcal{A} is an equivalence relation \sim on its underlying set A such that
(i) if $R \in L^{\mathrm{r}}$ is m-ary and $a_{1} \sim b_{1}, \ldots, a_{m} \sim b_{m}$, then

$$
\left(a_{1}, \ldots, a_{m}\right) \in R^{\mathcal{A}} \Longleftrightarrow\left(b_{1}, \ldots, b_{m}\right) \in R^{\mathcal{A}}
$$

(ii) if $F \in L^{\mathrm{f}}$ is n-ary and $a_{1} \sim b_{1}, \ldots, a_{n} \sim b_{n}$, then

$$
F^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right) \sim F^{\mathcal{A}}\left(b_{1}, \ldots, b_{n}\right)
$$

Note that a strong homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$ yields a congruence \sim_{h} on \mathcal{A} as follows: for $a_{1}, a_{2} \in A$ we put

$$
a_{1} \sim_{h} a_{2} \Longleftrightarrow h\left(a_{1}\right)=h\left(a_{2}\right)
$$

Given a congruence \sim on the L-structure \mathcal{A} we obtain an L-structure $\mathcal{A} / \sim($ the quotient of \mathcal{A} by \sim) as follows:
(i) the underlying set of \mathcal{A} / \sim is the quotient set A / \sim;
(ii) the interpretation of an m-ary $R \in L^{\mathrm{r}}$ in \mathcal{A} / \sim is the m-ary relation

$$
\left\{\left(a_{1}^{\sim}, \ldots, a_{m}^{\sim}\right):\left(a_{1}, \ldots, a_{m}\right) \in R^{\mathcal{A}}\right\}
$$

on A / \sim;
(iii) the interpretation of an n-ary $F \in L^{\mathrm{f}}$ in \mathcal{A} / \sim is the n-ary operation

$$
\left(a_{1}^{\sim}, \ldots, a_{n}^{\sim}\right) \mapsto F^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)^{\sim}
$$

on A / \sim.
Note that then we have a strong homomorphism $a \mapsto a^{\sim}: \mathcal{A} \rightarrow \mathcal{A} / \sim$.
Products. To combine many structures into a single we form products. Let $\left(\mathcal{B}_{i}\right)_{i \in I}$ be a family of L-structures, $\mathcal{B}_{i}=\left(B_{i} ; \ldots\right)$ for $i \in I$. The product

$$
\prod_{i \in I} \mathcal{B}_{i}
$$

is defined to be the L-structure \mathcal{B} whose underlying set is the product set $\prod_{i \in I} B_{i}$, and where the basic relations and functions are defined coordinatewise: for m-ary $R \in L^{\mathrm{r}}$ and elements $b_{1}=\left(b_{1 i}\right), \ldots, b_{m}=\left(b_{m i}\right) \in \prod_{i \in I} B_{i}$,

$$
\left(b_{1}, \ldots, b_{m}\right) \in R^{\mathcal{B}} \Longleftrightarrow\left(b_{1 i}, \ldots, b_{m i}\right) \in R^{\mathcal{B}_{i}} \text { for all } i \in I
$$

and for n-ary $F \in L^{\mathrm{f}}$ and $b_{1}=\left(b_{1 i}\right), \ldots, b_{n}=\left(b_{n i}\right) \in \prod_{i \in I} B_{i}$,

$$
F^{\mathcal{B}}\left(b_{1}, \ldots, b_{n}\right):=\left(F^{\mathcal{B}_{i}}\left(b_{1 i}, \ldots, b_{n i}\right)\right)_{i \in I^{\prime}}
$$

For $j \in I$ the projection map to the j th factor is the homomorphism

$$
\prod_{i \in I} \mathcal{B}_{i} \rightarrow \mathcal{B}_{j}, \quad\left(b_{i}\right) \mapsto b_{j}
$$

Using products we can combine several homomorphisms with a common domain into a single one: if for each $i \in I$ we have a homomorphism $h_{i}: \mathcal{A} \rightarrow \mathcal{B}_{i}$ we obtain a homomorphism

$$
h=\left(h_{i}\right): \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{B}_{i}, \quad h(a):=\left(h_{i}\left(a_{i}\right)\right)
$$

Exercises. For (1) below, recall that a normal subgroup of a group G is a subgroup N of G such that $a x a^{-1} \in N$ for all $a \in G$ and $x \in N$.
(1) Let G be a group viewed as a structure for the language of groups. Each normal subgroup N of G yields a congruence \equiv_{N} on G by

$$
a \equiv_{N} b \Longleftrightarrow a N=b N
$$

and each congruence on G equals \equiv_{N} for a unique normal subgroup N of G.
(2) Consider a strong homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$ of L-structures. Then we have an isomorphism from \mathcal{A} / \sim_{h} onto $h(\mathcal{A})$ given by $a^{\sim_{h}} \mapsto h(a)$.

2.4 Variables and Terms

Throughout this course

$$
\operatorname{Var}=\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right\}
$$

is a countably infinite set of symbols whose elements will be called variables; we assume that $\mathrm{v}_{m} \neq \mathrm{v}_{n}$ for $m \neq n$, and that no variable is a function or relation symbol in any language. We let x, y, z (sometimes with subscripts or superscripts) denote variables, unless indicated otherwise.

Remark. Chapters 2-4 go through if we take as our set Var of variables any infinite (possibly uncountable) set; in model theory this can even be convenient. For this more general Var we still insist that no variable is a function or relation symbol in any language. In the few cases in chapters 2-4 that this more general set-up requires changes in proofs, this will be pointed out.

The results in Chapter 5 on undecidability presuppose a numbering of the variables; our $\operatorname{Var}=\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right\}$ comes equipped with such a numbering.

Definition. An L-term is a word on the alphabet $L^{\mathrm{f}} \cup \operatorname{Var}$ obtained as follows: (i) each variable (viewed as a word of length 1) is an L-term;
(ii) whenever $F \in L^{\mathrm{f}}$ is n-ary and t_{1}, \ldots, t_{n} are L-terms, then the concatenation $F t_{1} \ldots t_{n}$ is an L-term.

Note: constant symbols of L are L-terms of length 1 , by clause (ii) for $n=0$. The L-terms are the admissible words on the alphabet $L^{\mathrm{f}} \cup$ Var where each variable has arity 0 . Thus "unique readability" is available.

We often write $t\left(x_{1}, \ldots, x_{n}\right)$ to indicate an L-term t in which no variables other than x_{1}, \ldots, x_{n} occur. Whenever we use this notation we assume tacitly that x_{1}, \ldots, x_{n} are distinct. Note that we do not require that each of x_{1}, \ldots, x_{n} actually occurs in $t\left(x_{1}, \ldots, x_{n}\right)$. (This is like indicating a polynomial in the indeterminates x_{1}, \ldots, x_{n} by $p\left(x_{1}, \ldots, x_{n}\right)$, where one allows that some of these indeterminates do not actually occur in the polynomial p.)

If a term is written as an admissible word, then it may be hard to see how it is built up from subterms. In practice we shall therefore use parentheses and brackets in denoting terms, and avoid prefix notation if tradition dictates otherwise.

Example. The word $\cdot+x-y z$ is an $L_{\text {Ring }}$-term. For easier reading we indicate this term instead by $(x+(-y)) \cdot z$ or even $(x-y) z$.

Definition. Let \mathcal{A} be an L-structure and $t=t(\vec{x})$ be an L-term where $\vec{x}=$ $\left(x_{1}, \ldots, x_{m}\right)$. Then we associate to the ordered pair (t, \vec{x}) a function $t^{\mathcal{A}}: A^{m} \rightarrow A$ as follows
(i) If t is the variable x_{i}, then $t^{\mathcal{A}}(a)=a_{i}$ for $a=\left(a_{1}, \ldots, a_{m}\right) \in A^{m}$.
(ii) If $t=F t_{1} \ldots t_{n}$ where $F \in L^{\mathrm{f}}$ is n-ary and t_{1}, \ldots, t_{n} are L-terms, then $t^{\mathcal{A}}(a)=F^{\mathcal{A}}\left(t_{1}^{\mathcal{A}}(a), \ldots, t_{n}^{\mathcal{A}}(a)\right)$ for $a \in A^{m}$.
This inductive definition is justified by unique readability. Note that if \mathcal{B} is a second L-structure and $\mathcal{A} \subseteq \mathcal{B}$, then $t^{\mathcal{A}}(a)=t^{\mathcal{B}}(a)$ for t as above and $a \in A^{m}$.

Example. Consider \mathbf{R} as a ring in the usual way, and let $t(x, y, z)$ be the $L_{\text {Ring }}{ }^{-}$ term $(x-y) z$. Then the function $t^{\mathbf{R}}: \mathbf{R}^{3} \rightarrow \mathbf{R}$ is given by $t^{\mathbf{R}}(a, b, c)=(a-b) c$.

A term is said to be variable-free if no variables occur in it. Let t be a variablefree L-term and \mathcal{A} an L-structure. Then the above gives a nullary function $t^{\mathcal{A}}: A^{0} \rightarrow A$, identified as usual with its value at the unique element of A^{0}, so $t^{\mathcal{A}} \in A$. In other words, if t is a constant symbol c, then $t^{\mathcal{A}}=c^{\mathcal{A}} \in A$, where $c^{\mathcal{A}}$ is as in the previous section, and if $t=F t_{1} \ldots t_{n}$ with n-ary $F \in L^{\mathrm{f}}$ and variable-free L-terms t_{1}, \ldots, t_{n}, then $t^{\mathcal{A}}=F^{\mathcal{A}}\left(t_{1}^{\mathcal{A}}, \ldots, t_{n}^{\mathcal{A}}\right)$.

Definition. Let t be an L-term, let x_{1}, \ldots, x_{n} be distinct variables, and let $\tau_{1}, \ldots, \tau_{n}$ be L-terms. Then $t\left(\tau_{1} / x_{1}, \ldots, \tau_{n} / x_{n}\right)$ is the word obtained by replacing all occurrences of x_{i} in t by τ_{i}, simultaneously for $i=1, \ldots, n$. If t is given in the form $t\left(x_{1}, \ldots, x_{n}\right)$, then we write $t\left(\tau_{1}, \ldots, \tau_{n}\right)$ as a shorthand for $t\left(\tau_{1} / x_{1}, \ldots, \tau_{n} / x_{n}\right)$.

The easy proof of the next lemma is left to the reader.

Lemma 2.4.1. Suppose t is an L-term, x_{1}, \ldots, x_{n} are distinct variables, and $\tau_{1}, \ldots, \tau_{n}$ are L-terms. Then $t\left(\tau_{1} / x_{1}, \ldots, \tau_{n} / x_{n}\right)$ is an L-term. If $\tau_{1}, \ldots, \tau_{n}$ are variable-free and $t=t\left(x_{1}, \ldots, x_{n}\right)$, then $t\left(\tau_{1}, \ldots, \tau_{n}\right)$ is variable-free.

We urge the reader to do exercise (1) below and thus acquire the confidence that these formal term substitutions do correspond to actual function substitutions. In the definition of $t\left(\tau_{1} / x_{1}, \ldots, \tau_{n} / x_{n}\right)$ the "replacing" should be simultaneous, because it can happen that for $t^{\prime}:=t\left(\tau_{1} / x_{1}\right)$ we have $t^{\prime}\left(\tau_{2} / x_{2}\right) \neq t\left(\tau_{1} / x_{1}, \tau_{2} / x_{2}\right)$. (Here t, τ_{1}, τ_{2} are L-terms and x_{1}, x_{2} are distinct variables.)

Generators. Let \mathcal{B} be an L-structure, let $G \subseteq B$, and assume also that L has a constant symbol or that $G \neq \emptyset$. Then the set

$$
\left\{t^{\mathcal{B}}\left(g_{1}, \ldots, g_{m}\right): t\left(x_{1}, \ldots, x_{m}\right) \text { is an } L \text {-term and } g_{1}, \ldots, g_{m} \in G\right\} \subseteq B
$$

is the underlying set of some $\mathcal{A} \subseteq \mathcal{B}$, and this \mathcal{A} is clearly a substructure of any $\mathcal{A}^{\prime} \subseteq \mathcal{B}$ with $G \subseteq A^{\prime}$. We call this \mathcal{A} the substructure of \mathcal{B} generated by G; if $\mathcal{A}=\mathcal{B}$, then we say that \mathcal{B} is generated by G. If $\left(a_{i}\right)_{i \in I}$ is a family of elements of B, then "generated by $\left(a_{i}\right)$ " means "generated by G " where $G=\left\{a_{i}: i \in I\right\}$.

Exercises.

(1) Let $t\left(x_{1}, \ldots, x_{m}\right)$ and $\tau_{1}\left(y_{1}, \ldots, y_{n}\right), \ldots, \tau_{m}\left(y_{1}, \ldots, y_{n}\right)$ be L-terms. Then the L term $t^{*}\left(y_{1}, \ldots, y_{n}\right):=t\left(\tau_{1}\left(y_{1}, \ldots, y_{n}\right), \ldots, \tau_{m}\left(y_{1}, \ldots, y_{n}\right)\right)$ has the property that if \mathcal{A} is an L-structure and $a=\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$, then

$$
\left(t^{*}\right)^{\mathcal{A}}(a)=t^{\mathcal{A}}\left(\tau_{1}^{\mathcal{A}}(a), \ldots, \tau_{m}^{\mathcal{A}}(a)\right)
$$

(2) For every L_{Ab}-term $t\left(x_{1}, \ldots, x_{n}\right)$ there are integers k_{1}, \ldots, k_{n} such that for every abelian group $\mathcal{A}=(A ; 0,-,+)$,

$$
t^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)=k_{1} a_{1}+\cdots+k_{n} a_{n}, \quad \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in A^{n} .
$$

Conversely, for any integers k_{1}, \ldots, k_{n} there is an L_{Ab}-term $t\left(x_{1}, \ldots, x_{n}\right)$ such that in every abelian group $\mathcal{A}=(A ; 0,-,+)$ the above displayed identity holds.
(3) For every $L_{\text {Ring }}$-term $t\left(x_{1}, \ldots, x_{n}\right)$ there is a polynomial

$$
P\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]
$$

such that for every commutative ring $\mathcal{R}=(R ; 0,1,-,+, \cdot)$,

$$
t^{\mathcal{R}}\left(r_{1}, \ldots, r_{n}\right)=P\left(r_{1}, \ldots, r_{n}\right), \quad \text { for all }\left(r_{1}, \ldots, r_{n}\right) \in R^{n}
$$

Conversely, for any polynomial $P\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]$ there is an $L_{\text {Ring }}-$ term $t\left(x_{1}, \ldots, x_{n}\right)$ such that in every commutative $\operatorname{ring} \mathcal{R}=(R ; 0,1,-,+, \cdot)$ the above displayed identity holds.
(4) Let \mathcal{A} and \mathcal{B} be L-structures, $h: \mathcal{A} \rightarrow \mathcal{B}$ a homomorphism, and $t=t\left(x_{1}, \ldots, x_{n}\right)$ an L-term. Then

$$
h\left(t^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=t^{\mathcal{B}}\left(h a_{1}, \ldots, h a_{n}\right), \quad \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in A^{n}
$$

(If $\mathcal{A} \subseteq \mathcal{B}$ and $h: \mathcal{A} \rightarrow \mathcal{B}$ is the inclusion, this gives $t^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)=t^{\mathcal{B}}\left(a_{1}, \ldots, a_{n}\right)$ for all $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$.)
(5) Consider the L-structure $\mathcal{N}=(\mathbf{N} ; 0,1,+, \cdot)$ where $L=L_{\text {Rig }}$.
(a) Is there an L-term $t(x)$ such that $t^{\mathcal{N}}(0)=1$ and $t^{\mathcal{N}}(1)=0$?
(b) Is there an L-term $t(x)$ such that $t^{\mathcal{N}}(n)=2^{n}$ for all $n \in \mathbf{N}$?
(c) Find all the substructures of \mathcal{N}.

2.5 Formulas and Sentences

Besides variables we also introduce the eight distinct logical symbols

$$
\top \quad \perp \quad \neg \quad \vee \wedge \quad=\quad \exists \quad \forall
$$

The first five of these we already met when discussing propositional logic. None of these eight symbols is a variable, or a function or relation symbol of any language. Below L denotes a language. To distinguish the logical symbols from those in L, the latter are often referred to as the non-logical symbols.

Definition. The atomic L-formulas are the following words on the alphabet $L \cup \operatorname{Var} \cup\{\top, \perp,=\}$:
(i) \top and \perp,
(ii) $R t_{1} \ldots t_{m}$, where $R \in L^{\mathrm{r}}$ is m-ary and t_{1}, \ldots, t_{m} are L-terms,
(iii) $=t_{1} t_{2}$, where t_{1} and t_{2} are L-terms.

The L-formulas are the words on the larger alphabet

$$
L \cup \operatorname{Var} \cup\{\top, \perp, \neg, \vee, \wedge,=, \exists, \forall\}
$$

obtained as follows:
(i) every atomic L-formula is an L-formula;
(ii) if φ, ψ are L-formulas, then so are $\neg \varphi, \vee \varphi \psi$, and $\wedge \varphi \psi$;
(iii) if φ is a L-formula and x is a variable, then $\exists x \varphi$ and $\forall x \varphi$ are L-formulas.

Note that all L-formulas are admissible words on the alphabet

$$
L \cup \operatorname{Var} \cup\{\top, \perp, \neg, \vee, \wedge,=, \exists, \forall\}
$$

where $=, \exists$ and \forall are given arity 2 and the other symbols have the arities assigned to them earlier. This fact makes the results on unique readability applicable to L-formulas. (However, not all admissible words on this alphabet are L-formulas: the word $\exists x x$ is admissible but not an L-formula.)

The notational conventions introduced in the section on propositional logic go through, with the role of propositions there taken over by formulas here. (For example, given L-formulas φ and ψ we shall write $\varphi \vee \psi$ to indicate $\vee \varphi \psi$, and $\varphi \rightarrow \psi$ to indicate $\neg \varphi \vee \psi$.) Here is a notational convention specific to predicate logic: given distinct variables x_{1}, \ldots, x_{n} and an L-formula φ we let $\exists x_{1} \ldots x_{n} \varphi$ and $\forall x_{1} \ldots x_{n} \varphi$ abbreviate $\exists x_{1} \ldots \exists x_{m} \varphi$ and $\forall x_{1} \ldots \forall x_{m} \varphi$, respectively. Thus if x, y, z are distinct variables, then $\exists x y z \varphi$ stands for $\exists x \exists y \exists z \varphi$.

The reader should distinguish between different ways of using the symbol $=$. Sometimes it denotes one of the eight formal logical symbols, but we also use it
to indicate equality of mathematical objects in the way we have done already many times. The context should always make it clear what our intention is in this respect without having to spell it out. To increase readability we usually write an atomic formula $=t_{1} t_{2}$ as $t_{1}=t_{2}$ and its negation $\neg=t_{1} t_{2}$ as $t_{1} \neq t_{2}$, where t_{1}, t_{2} are L-terms. The logical symbol $=$ is treated just as a binary relation symbol, but its interpretation in a structure will always be the equality relation on its underlying set. This will become clear later.

Definition. Let φ be a formula of L. Written as a word on the alphabet above we have $\varphi=s_{1} \ldots s_{m}$. A subformula of φ is a subword of the form $s_{i} \ldots s_{k}$ where $1 \leq i \leq k \leq m$ which also happens to be a formula of L.

An occurrence of a variable x in φ at the j-th place (that is, $s_{j}=x$) is said to be a bound occurrence if φ has a subformula $s_{i} s_{i+1} \ldots s_{k}$ with $i \leq j \leq k$ that is of the form $\exists x \psi$ or $\forall x \psi$. If an occurrence is not bound, then it is said to be a free occurrence.

At this point the reader is invited to do the first exercise at the end of this section, which gives another useful characterization of subformulas.

Example. In the formula $(\exists x(x=y)) \wedge x=0$, where x and y are distinct, the first two occurrences of x are bound, the third is free, and the only occurrence of y is free. (Note: the formula is actually the string $\wedge \exists x=x y=x 0$, and the occurrences of x and y are really the occurrences in this string.)

Definition. A sentence is a formula in which all occurrences of variables are bound occurrences.

We let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ indicate a formula φ such that all variables that occur free in φ are among x_{1}, \ldots, x_{n}. In using this notation it is understood that x_{1}, \ldots, x_{n} are distinct variables, but it is not required that each of x_{1}, \ldots, x_{n} occurs free in φ. (This is analogous to indicating a polynomial equation in the indeterminates x_{1}, \ldots, x_{n} by $p\left(x_{1}, \ldots, x_{n}\right)=0$, where one allows that some of these indeterminates do not actually occur in p.)

Definition. Let φ be an L-formula, let x_{1}, \ldots, x_{n} be distinct variables, and let t_{1}, \ldots, t_{n} be L-terms. Then $\varphi\left(t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right)$ is the word obtained by replacing all the free occurrences of x_{i} in φ by t_{i}, simultaneously for $i=1, \ldots, n$. If φ is given in the form $\varphi\left(x_{1}, \ldots, x_{n}\right)$, then we write $\varphi\left(t_{1}, \ldots, t_{n}\right)$ as a shorthand for $\varphi\left(t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right)$.

We have the following lemma whose routine proof is left to the reader.
Lemma 2.5.1. Suppose φ is an L-formula, x_{1}, \ldots, x_{n} are distinct variables, and t_{1}, \ldots, t_{n} are L-terms. Then $\varphi\left(t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right)$ is an L-formula. If t_{1}, \ldots, t_{n} are variable-free and $\varphi=\varphi\left(x_{1}, \ldots, x_{n}\right)$, then $\varphi\left(t_{1}, \ldots, t_{n}\right)$ is an L sentence.

In the definition of $\varphi\left(t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right)$ the "replacing" should be simultaneous, because it can happen that $\varphi\left(t_{1} / x_{1}\right)\left(t_{2} / x_{2}\right) \neq \varphi\left(t_{1} / x_{1}, t_{2} / x_{2}\right)$.

Let \mathcal{A} be an L-structure with underlying set A, and let $C \subseteq A$. We extend L to a language L_{C} by adding a constant symbol \underline{c} for each $c \in C$, called the name of c. These names are symbols not in L. We make \mathcal{A} into an L_{C}-structure by keeping the same underlying set and interpretations of symbols of L, and by interpreting each name \underline{c} as the element $c \in C$. The L_{C}-structure thus obtained is indicated by \mathcal{A}_{C}. Hence for each variable-free L_{C}-term t we have a corresponding element $t^{\mathcal{A}_{C}}$ of A, which for simplicity of notation we denote instead by $t^{\mathcal{A}}$. All this applies in particular to the case $C=A$, where in L_{A} we have a name \underline{a} for each $a \in A$.
Definition. We can now define what it means for an L_{A}-sentence σ to be true in the L-structure \mathcal{A} (notation: $\mathcal{A} \models \sigma$, also read as \mathcal{A} satisfies σ or σ holds in \mathcal{A}, or σ is valid in \mathcal{A}). First we consider atomic L_{A}-sentences:
(i) $\mathcal{A} \models \mathrm{T}$, and $\mathcal{A} \nLeftarrow \perp$;
(ii) $\mathcal{A} \models R t_{1} \ldots t_{m}$ if and only if $\left(t_{1}^{\mathcal{A}}, \ldots, t_{m}^{\mathcal{A}}\right) \in R^{\mathcal{A}}$, for m-ary $R \in L^{\mathrm{r}}$, and variable-free L_{A}-terms t_{1}, \ldots, t_{m};
(iii) $\mathcal{A} \vDash t_{1}=t_{2}$ if and only if $t_{1}^{\mathcal{A}}=t_{2}^{\mathcal{A}}$, for variable-free L_{A}-terms t_{1}, t_{2}.

We extend the definition inductively to arbitrary L_{A}-sentences as follows:
(i) $\sigma=\neg \sigma_{1}$: then $\mathcal{A} \models \sigma$ if and only if $\mathcal{A} \not \models \sigma_{1}$.
(ii) $\sigma=\sigma_{1} \vee \sigma_{2}$: then $\mathcal{A} \models \sigma$ if and only if $\mathcal{A} \models \sigma_{1}$ or $\mathcal{A} \models \sigma_{2}$.
(iii) $\sigma=\sigma_{1} \wedge \sigma_{2}$: then $\mathcal{A} \models \sigma$ if and only if $\mathcal{A} \models \sigma_{1}$ and $\mathcal{A} \models \sigma_{2}$.
(iv) $\sigma=\exists x \varphi(x)$: then $\mathcal{A} \models \sigma$ if and only if $\mathcal{A} \models \varphi(\underline{a})$ for some $a \in A$.
(v) $\sigma=\forall x \varphi(x)$: then $\mathcal{A} \models \sigma$ if and only if $\mathcal{A} \models \varphi(\underline{a})$ for all $a \in A$.

Even if we just want to define $\mathcal{A} \models \sigma$ for L-sentences σ, one can see that if σ has the form $\exists x \varphi(x)$ or $\forall x \varphi(x)$, the inductive definition above forces us to consider L_{A}-sentences $\varphi(\underline{a})$. This is why we introduced names. We didn't say so explicitly, but "inductive" refers here to induction with respect to the number of logical symbols in σ. For example, the fact that $\varphi(\underline{a})$ has fewer logical symbols than $\exists x \varphi(x)$ is crucial for the above to count as a definition. Also unique readability is involved: without it we would not allow clauses (ii) and (iii) as part of our inductive definition.

It is easy to check that for an L_{A}-sentence $\sigma=\exists x_{1} \ldots x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)$,

$$
\mathcal{A} \models \sigma \Longleftrightarrow \mathcal{A} \models \varphi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right) \text { for some }\left(a_{1}, \ldots, a_{n}\right) \in A^{n},
$$

and that for an L_{A}-sentence $\sigma=\forall x_{1} \ldots x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)$,

$$
\mathcal{A} \models \sigma \Longleftrightarrow \mathcal{A} \models \varphi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right) \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in A^{n}
$$

Definition. Given an L_{A}-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ we let $\varphi^{\mathcal{A}}$ be the following subset of A^{n} :

$$
\varphi^{\mathcal{A}}=\left\{\left(a_{1}, \ldots, a_{n}\right): \mathcal{A} \models \varphi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right)\right\}
$$

The formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is said to define the set $\varphi^{\mathcal{A}}$ in \mathcal{A}. A set $S \subseteq A^{n}$ is said to be definable in \mathcal{A} if $S=\varphi^{\mathcal{A}}$ for some L_{A}-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$. If moreover φ can be chosen to be an L-formula, then S is said to be 0 -definable in \mathcal{A}.

Examples.

(1) The set $\{r \in \mathbf{R}: r<\sqrt{2}\}$ is 0-definable in $(\mathbf{R} ;<, 0,1,+,-, \cdot)$: it is defined by the formula $\left(x^{2}<1+1\right) \vee(x<0)$. (Here x^{2} abbreviates the term $x \cdot x$.)
(2) The set $\{r \in \mathbf{R}: r<\pi\}$ is definable in $(\mathbf{R} ;<, 0,1,+,-, \cdot)$: it is defined by the formula $x<\underline{\pi}$.

To show that a set $X \subseteq A$ is not 0 -definable in \mathcal{A}, one can sometimes use automorphisms of \mathcal{A}; see the exercises below. We call a map $f: X \rightarrow A^{n}$ with $X \subseteq A^{m}$ definable in \mathcal{A} if its graph as a subset of A^{m+n} is definable in \mathcal{A}; note that then its domain X is definable in \mathcal{A}.

We now single out formulas by certain syntactical conditions. These conditions have semantic counterparts in terms of the behaviour of these formulas under various kinds of homomorphisms, as shown in some exercises below. (These exercises also show that isomorphic L-structures satisfy exactly the same L sentences.)

An L-formula is said to be quantifier-free if it has no occurrences of \exists and no occurrences of \forall. An L-formula is said to be existential if it has the form $\exists x_{1} \ldots x_{m} \varphi$ with distinct x_{1}, \ldots, x_{m} and a quantifier-free L-formula φ. An L-formula is said to be universal if it has the form $\forall x_{1} \ldots x_{m} \varphi$ with distinct x_{1}, \ldots, x_{m} and a quantifier-free L-formula φ. An L-formula is said to be positive if it has no occurrences of \neg (but it can have occurrences of \perp).

Exercises.

(1) Let φ and ψ be L-formulas; put $\operatorname{sf}(\varphi):=$ set of subformulas of φ.
(a) If φ is atomic, then $\operatorname{sf}(\varphi)=\{\varphi\}$.
(b) $\operatorname{sf}(\neg \varphi)=\{\neg \varphi\} \cup \operatorname{sf}(\varphi)$.
(c) $\operatorname{sf}(\varphi \vee \psi)=\{\varphi \vee \psi\} \cup \operatorname{sf}(\varphi) \cup \operatorname{sf}(\psi)$, and $\operatorname{sf}(\varphi \wedge \psi)=\{\varphi \wedge \psi\} \cup \operatorname{sf}(\varphi) \cup \operatorname{sf}(\psi)$.
(d) $\operatorname{sf}(\exists x \varphi)=\{\exists x \varphi\} \cup \operatorname{sf}(\varphi)$, and $\operatorname{sf}(\forall x \varphi)=\{\forall x \varphi\} \cup \operatorname{sf}(\varphi)$.
(2) Let φ and ψ be L-formulas, x, y variables, and t an L-term.
(a) $(\neg \varphi)(t / x)=\neg(\varphi(t / x))$.
(b) $(\varphi \vee \psi)(t / x)=\varphi(t / x) \vee \psi(t / x)$, and $(\varphi \wedge \psi)(t / x)=\varphi(t / x) \wedge \psi(t / x)$.
(c) $\quad(\exists y \varphi)(t / x)=\exists y(\varphi(t / x))$ if x and y are different, and $(\exists y \varphi)(t / x)=\exists y \varphi$ if x and y are the same; likewise with $\forall y \varphi$.
(3) If $t\left(x_{1}, \ldots, x_{n}\right)$ is an L_{A}-term and $a_{1}, \ldots, a_{n} \in A$, then

$$
t\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right)^{\mathcal{A}}=t^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)
$$

(4) Suppose that $S_{1} \subseteq A^{n}$ and $S_{2} \subseteq A^{n}$ are defined in \mathcal{A} by the L_{A}-formulas $\varphi_{1}\left(x_{1}, \ldots, x_{n}\right)$ and $\varphi_{2}\left(x_{1}, \ldots, x_{n}\right)$ respectively. Then:
(a) $S_{1} \cup S_{2}$ is defined in \mathcal{A} by $\left(\varphi_{1} \vee \varphi_{2}\right)\left(x_{1}, \ldots, x_{n}\right)$.
(b) $S_{1} \cap S_{2}$ is defined in \mathcal{A} by $\left(\varphi_{1} \wedge \varphi_{2}\right)\left(x_{1}, \ldots, x_{n}\right)$.
(c) $A^{n} \backslash S_{1}$ is defined in \mathcal{A} by $\neg \varphi_{1}\left(x_{1}, \ldots, x_{n}\right)$.
(d) $S_{1} \subseteq S_{2} \Longleftrightarrow \mathcal{A} \models \forall x_{1} \ldots x_{n}\left(\varphi_{1} \rightarrow \varphi_{2}\right)$.
(5) Let $\pi: A^{m+n} \rightarrow A^{m}$ be the projection map given by

$$
\pi\left(a_{1}, \ldots, a_{m+n}\right)=\left(a_{1}, \ldots, a_{m}\right)
$$

and for $S \subseteq A^{m+n}$ and $a \in A^{m}$, put

$$
\left.S(a):=\left\{b \in A^{n}:(a, b) \in S\right\} \quad \text { (a section of } S\right) .
$$

Suppose that $S \subseteq A^{m+n}$ is defined in \mathcal{A} by the L_{A}-formula $\varphi(x, y)$ where $x=$ $\left(x_{1}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$. Then $\exists y_{1} \ldots y_{n} \varphi(x, y)$ defines in \mathcal{A} the subset $\pi(S)$ of A^{m}, and $\forall y_{1} \ldots y_{n} \varphi(x, y)$ defines in \mathcal{A} the set

$$
\left\{a \in A^{m}: S(a)=A^{n}\right\} .
$$

(6) The following sets are 0-definable in the corresponding structures:
(a) The ordering relation $\left\{(m, n) \in \mathbf{N}^{2}: m<n\right\}$ in ($\mathbf{N} ; 0,+$).
(b) The set $\{2,3,5,7, \ldots\}$ of prime numbers in the semiring $\mathcal{N}=(\mathbf{N} ; 0,1,+, \cdot)$.
(c) The set $\left\{2^{n}: n \in \mathbf{N}\right\}$ in the semiring \mathcal{N}.
(d) The set $\{a \in \mathbf{R}: f$ is continuous at $a\}$ in $(\mathbf{R} ;<, f)$ where $f: \mathbf{R} \rightarrow \mathbf{R}$ is any function.
(7) Let the symbols of L be a binary relation symbol $<$ and a unary relation symbol U. Then there is an L-sentence σ such that for all $X \subseteq \mathbf{R}$ we have

$$
(\mathbf{R} ;<, X) \models \sigma \Longleftrightarrow X \text { is finite. }
$$

(8) Let $\mathcal{A} \subseteq \mathcal{B}$. Then we consider L_{A} to be a sublanguage of L_{B} in such a way that each $a \in A$ has the same name in L_{A} as in L_{B}. This convention is in force throughout these notes.
(a) For each variable free L_{A}-term t we have $t^{\mathcal{A}}=t^{\mathcal{B}}$.
(b) If the L_{A}-sentence σ is quantifier-free, then $\mathcal{A} \models \sigma \Leftrightarrow \mathcal{B} \models \sigma$.
(c) If σ is an existential L_{A}-sentence, then $\mathcal{A} \models \sigma \Rightarrow \mathcal{B} \models \sigma$
(d) If σ is a universal L_{A}-sentence, then $\mathcal{B} \models \sigma \Rightarrow \mathcal{A} \models \sigma$.
(9) Suppose $h: \mathcal{A} \longrightarrow \mathcal{B}$ is a homomorphism of L-structures. For each L_{A}-term t, let t_{h} be the L_{B}-term obtained from t by replacing each occurrence of a name \underline{a} of an element $a \in A$ by the name $\underline{h a}$ of the corresponding element $h a \in B$. Similarly, for each L_{A}-formula φ, let φ_{h} be the L_{B}-formula obtained from φ by replacing each occurrence of a name \underline{a} of an element $a \in A$ by the name $\underline{h a}$ of the corresponding element $h a \in B$. Note that if φ is a sentence, so is φ_{h}. Then:
(a) if t is a variable-free L_{A}-term, then $h\left(t^{\mathcal{A}}\right)=t_{h}^{\mathcal{B}}$;
(b) if σ is a positive L_{A}-sentence without \forall-symbol, then $\mathcal{A} \models \sigma \Rightarrow \mathcal{B} \models \sigma_{h}$;
(c) if σ is a positive L_{A}-sentence and h is surjective, then $\mathcal{A} \models \sigma \Rightarrow \mathcal{B} \models \sigma_{h}$;
(d) if σ is an L_{A}-sentence and h is an isomorphism, then $\mathcal{A} \models \sigma \Leftrightarrow \mathcal{B} \models \sigma_{h}$;
(10) If f is an automorphism of \mathcal{A} and $X \subseteq A$ is 0-definable in \mathcal{A}, then $f(X)=X$.

2.6 Models

In the rest of this chapter L is a language, \mathcal{A} is an L-structure (with underlying set A), and, unless indicated otherwise, t is an L-term, φ, ψ, and θ are L formulas, σ is an L-sentence, and Σ is a set of L-sentences. We drop the prefix L in " L-term" and " L-formula" and so on, unless this would cause confusion.

Definition. We say that \mathcal{A} is a model of Σ or Σ holds in \mathcal{A} (denoted $\mathcal{A}=\Sigma$) if $\mathcal{A} \models \sigma$ for each $\sigma \in \Sigma$.

To discuss examples it is convenient to introduce some notation. Suppose L contains (at least) the constant symbol 0 and the binary function symbol + . Given any terms t_{1}, \ldots, t_{n} we define the term $t_{1}+\cdots+t_{n}$ inductively as follows: it is the term 0 if $n=0$, the term t_{1} if $n=1$, and the term $\left(t_{1}+\cdots+t_{n-1}\right)+t_{n}$ for $n>1$. We write $n t$ for the term $t+\cdots+t$ with n summands, in particular, $0 t$ and $1 t$ denote the terms 0 and t respectively. Suppose L contains the constant symbol 1 and the binary function symbol • (the multiplication sign). Then we have similar notational conventions for $t_{1} \cdot \ldots \cdot t_{n}$ and t^{n}; in particular, for $n=0$ both stand for the term 1 , and t^{1} is just t.

Examples. Fix three distinct variables x, y, z.
(1) Totally ordered sets are the L_{O}-structures that are models of

$$
\{\forall x(x \nless x), \forall x y z((x<y \wedge y<z) \rightarrow x<z), \forall x y(x<y \vee x=y \vee y<x)\} .
$$

(2) Groups are the L_{Gr}-structures that are models of

$$
\begin{aligned}
\operatorname{Gr}:=\left\{\forall x(x \cdot 1=x \wedge 1 \cdot x=x), \forall x\left(x \cdot x^{-1}=1 \wedge x^{-1} \cdot x=1\right)\right. & \\
& \forall x y z((x \cdot y) \cdot z=x \cdot(y \cdot z))\}
\end{aligned}
$$

(3) Abelian groups are the L_{Ab}-structures that are models of

$$
\begin{aligned}
\mathrm{Ab}:=\{\forall x(x+0=x), \forall x(x+(-x) & =0), \forall x y(x+y=y+x) \\
& \forall x y z((x+y)+z=x+(y+z))\}
\end{aligned}
$$

(4) Torsion-free abelian groups are the L_{Ab}-structures that are models of

$$
\mathrm{Ab} \cup\{\forall x(n x=0 \rightarrow x=0): n=1,2,3, \ldots\}
$$

(5) Rings are the $L_{\text {Ring }}$-structures that are models of

$$
\begin{aligned}
\operatorname{Ring}:= & \operatorname{Ab} \cup\{\forall x y z((x \cdot y) \cdot z=x \cdot(y \cdot z)), \forall x(x \cdot 1=x \wedge 1 \cdot x=x) \\
& \forall x y z((x \cdot(y+z)=x \cdot y+x \cdot z \wedge(x+y) \cdot z=x \cdot z+y \cdot z))\}
\end{aligned}
$$

(6) Fields are the $L_{\text {Ring }}$-structures that are models of

$$
\mathrm{Fl}=\operatorname{Ring} \cup\{\forall x \forall y(x \cdot y=y \cdot x), 1 \neq 0, \forall x(x \neq 0 \rightarrow \exists y(x \cdot y=1))\}
$$

(7) Fields of characteristic 0 are the $L_{\text {Ring }}$-structures that are models of

$$
\mathrm{Fl}(0):=\mathrm{Fl} \cup\{n 1 \neq 0: n=2,3,5,7,11, \ldots\}
$$

(8) Given a prime number p, fields of characteristic p are the $L_{\text {Ring }}$-structures that are models of $\mathrm{Fl}(p):=\mathrm{Fl} \cup\{p 1=0\}$.
(9) Algebraically closed fields are the $L_{\text {Ring }}$-structures that are models of
$\mathrm{ACF}:=\mathrm{Fl} \cup\left\{\forall u_{1} \ldots u_{n} \exists x\left(x^{n}+u_{1} x^{n-1}+\cdots+u_{n}=0\right): n=2,3,4,5, \ldots\right\}$
Here $u_{1}, u_{2}, u_{3}, \ldots$ is some fixed infinite sequence of distinct variables, distinct also from x, and $u_{i} x^{n-i}$ abbreviates $u_{i} \cdot x^{n-i}$, for $i=1, \ldots, n$.
(10) Algebraically closed fields of characteristic 0 are the $L_{\text {Ring }}$-structures that are models of $\mathrm{ACF}(0):=\mathrm{ACF} \cup\{n 1 \neq 0: n=2,3,5,7,11, \ldots\}$.
(11) Given a prime number p, algebraically closed fields of characteristic p are the $L_{\text {Ring }}$-structures that are models of $\operatorname{ACF}(p):=\mathrm{ACF} \cup\{p 1=0\}$.

In Example (1) our use of the symbol < rather than \leq indicates that we take the strict version of a total order, as the sentences mentioned in (1) specify. This is a minor difference with how we defined totally ordered sets in Section 2.3, using the nonstrict version of an ordering, with \leq as the primitive notion. Another minor difference is that in Section 2.3 we allowed the underlying set of a poset to be empty, but in (1) the underlying set of a totally ordered set is nonempty, since that is a general requirement for the structures considered in these notes.

Definition. We say that σ is a logical consequence of Σ (written $\Sigma \models \sigma$) if σ is true in every model of Σ.

Example. It is well-known that in any ring R we have $a \cdot 0=0$ for all $a \in R$. This can now be expressed as Ring $\models \forall x(x \cdot 0=0)$.

We defined what it means for a sentence σ to hold in a given structure \mathcal{A}. We now extend this to arbitrary formulas.

First define an \mathcal{A}-instance of a formula $\varphi=\varphi\left(x_{1}, \ldots, x_{m}\right)$ to be an $L_{A^{-}}$ sentence of the form $\varphi\left(\underline{a}_{1}, \ldots, \underline{a}_{m}\right)$ with $a_{1}, \ldots, a_{m} \in A$. Of course φ can also be written as $\varphi\left(y_{1}, \ldots, y_{n}\right)$ for another sequence of variables y_{1}, \ldots, y_{n}, for example, y_{1}, \ldots, y_{n} could be obtained by permuting x_{1}, \ldots, x_{m}, or it could be $x_{1}, \ldots, x_{m}, x_{m+1}$, obtained by adding a variable x_{m+1}. Thus for the above to count as a definition of " \mathcal{A}-instance," the reader should check that these different ways of specifying variables (including at least the variables occurring free in φ) give the same \mathcal{A}-instances.

Definition. A formula φ is said to be valid in \mathcal{A} (notation: $\mathcal{A} \models \varphi$) if all its \mathcal{A}-instances are true in \mathcal{A}.

The reader should check that if $\varphi=\varphi\left(x_{1}, \ldots, x_{m}\right)$, then

$$
\mathcal{A} \models \varphi \Longleftrightarrow \mathcal{A} \models \forall x_{1} \ldots \forall x_{m} \varphi .
$$

We also extend the notion of "logical consequence of Σ " to formulas (but Σ continues to be a set of sentences).

Definition. We say that φ is a logical consequence of Σ (notation: $\Sigma \mid=\varphi$) if $\mathcal{A} \models \varphi$ for all models \mathcal{A} of Σ.

One should not confuse the notion of "logical consequence of Σ " with that of "provable from Σ." We shall give a definition of provable from Σ in the next section. The two notions will turn out to be equivalent, but that is hardly obvious from their definitions: we shall need much of the next chapter to prove this equivalence, which is called the Completeness Theorem for Predicate Logic. We finish this section with two basic facts:

Lemma 2.6.1. Let $\alpha\left(x_{1}, \ldots, x_{m}\right)$ be an L_{A}-term, and recall that α defines a map $\alpha^{\mathcal{A}}: A^{m} \rightarrow A$. Let t_{1}, \ldots, t_{m} be variable-free L_{A}-terms, with $t_{i}^{\mathcal{A}}=a_{i} \in A$ for $i=1, \ldots, m$. Then $\alpha\left(t_{1}, \ldots, t_{m}\right)$ is a variable-free L_{A}-term, and

$$
\alpha\left(t_{1}, \ldots, t_{m}\right)^{\mathcal{A}}=\alpha\left(\underline{a}_{1}, \ldots \underline{a}_{m}\right)^{\mathcal{A}}=\alpha^{\mathcal{A}}\left(t_{1}^{\mathcal{A}}, \ldots, t_{m}^{\mathcal{A}}\right)
$$

This follows by a straightforward induction on α.
Lemma 2.6.2. Let t_{1}, \ldots, t_{m} be variable-free L_{A}-terms with $t_{i}^{\mathcal{A}}=a_{i} \in A$ for $i=1, \ldots, m$. Let $\varphi\left(x_{1}, \ldots, x_{m}\right)$ be an L_{A}-formula. Then the L_{A}-formula $\varphi\left(t_{1}, \ldots, t_{m}\right)$ is a sentence and

$$
\mathcal{A} \models \varphi\left(t_{1}, \ldots, t_{m}\right) \Longleftrightarrow \mathcal{A}=\varphi\left(\underline{a}_{1}, \ldots, \underline{a}_{m}\right) .
$$

Proof. To keep notations simple we give the proof only for $m=1$ with $t=t_{1}$ and $x=x_{1}$. We proceed by induction on the number of logical symbols in $\varphi(x)$.

Suppose that φ is atomic. The case where φ is \top or \perp is obvious. Assume φ is $R \alpha_{1} \ldots \alpha_{m}$ where $R \in L^{\mathrm{r}}$ is m-ary and $\alpha_{1}(x), \ldots, \alpha_{m}(x)$ are L_{A}-terms. Then $\varphi(t)=R \alpha_{1}(t) \ldots \alpha_{m}(t)$ and $\varphi(\underline{a})=R \alpha_{1}(\underline{a}) \ldots \alpha_{m}(\underline{a})$. We have $\mathcal{A} \models \varphi(t)$ iff $\left(\alpha_{1}(t)^{\mathcal{A}}, \ldots, \alpha_{m}(t)^{\mathcal{A}}\right) \in R^{\mathcal{A}}$ and also $\mathcal{A} \models \varphi(\underline{a})$ iff $\left(\alpha_{1}(\underline{a})^{\mathcal{A}}, \ldots, \alpha_{m}(\underline{a})^{\mathcal{A}}\right) \in R^{\mathcal{A}}$. As $\alpha_{i}(t)^{\mathcal{A}}=\alpha_{i}(\underline{a})^{\mathcal{A}}$ for all i by the previous lemma, we have $\mathcal{A} \models \varphi(t)$ iff $\mathcal{A} \models \varphi(\underline{a})$. The case that $\varphi(x)$ is $\alpha(x)=\beta(x)$ is handled the same way.

It is also clear that the desired property is inherited by disjunctions, conjunctions and negations of formulas $\varphi(x)$ that have the property. Suppose now that $\varphi(x)=\exists y \psi$.

Case $y \neq x$: Then $\psi=\psi(x, y), \varphi(t)=\exists y \psi(t, y)$ and $\varphi(\underline{a})=\exists y \psi(\underline{a}, y)$. As $\varphi(t)=\exists y \psi(t, y)$, we have $\mathcal{A} \models \varphi(t)$ iff $\mathcal{A} \models \psi(t, \underline{b})$ for some $b \in A$. By the inductive hypothesis the latter is equivalent to $\mathcal{A} \models \psi(\underline{a}, \underline{b})$ for some $b \in A$, hence equivalent to $\mathcal{A} \models \exists y \psi(\underline{a}, y)$. As $\varphi(\underline{a})=\exists y \psi(\underline{a}, y)$, we conclude that $\mathcal{A} \models \varphi(t)$ iff $\mathcal{A} \models \varphi(\underline{a})$.

Case $y=x$: Then x does not occur free in $\varphi(x)=\exists x \psi$. So $\varphi(t)=\varphi(\underline{a})=\varphi$ is an L_{A}-sentence, and $\mathcal{A} \models \varphi(t) \Leftrightarrow \mathcal{A} \models \varphi(\underline{a})$ is obvious.

When $\varphi(x)=\forall y \psi$ then one can proceed exactly as above by distinguishing two cases.

2.7 Logical Axioms and Rules; Formal Proofs

In this section we introduce a proof system for predicate logic and state its completeness. We then derive as a consequence the compactness theorem and
some of its corollaries. The completeness is proved in the next chapter. We remind the reader of the notational conventions at the beginning of Section 2.6.

A propositional axiom of L is by definition a formula that for some φ, ψ, θ occurs in the list below:

1. T
2. $\varphi \rightarrow(\varphi \vee \psi) ; \quad \varphi \rightarrow(\psi \vee \varphi)$
3. $\neg \varphi \rightarrow(\neg \psi \rightarrow \neg(\varphi \vee \psi))$
4. $(\varphi \wedge \psi) \rightarrow \varphi ; \quad(\varphi \wedge \psi) \rightarrow \psi$
5. $\varphi \rightarrow(\psi \rightarrow(\varphi \wedge \psi))$
6. $(\varphi \rightarrow(\psi \rightarrow \theta)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \theta))$
7. $\varphi \rightarrow(\neg \varphi \rightarrow \perp)$
8. $(\neg \varphi \rightarrow \perp) \rightarrow \varphi$

Each of items $2-8$ is a scheme describing infinitely many axioms. Note that this list is the same as the list in Section 2.2 except that instead of propositions p, q, r we have formulas φ, ψ, θ.

The logical axioms of L are the propositional axioms of L and the equality and quantifier axioms of L as defined below.

Definition. The equality axioms of L are the following formulas:
(i) $x=x$,
(ii) $x=y \rightarrow y=x$,
(iii) $(x=y \wedge y=z) \rightarrow x=z$,
(iv) $\left(x_{1}=y_{1} \wedge \ldots \wedge x_{m}=y_{m} \wedge R x_{1} \ldots x_{m}\right) \rightarrow R y_{1} \ldots y_{m}$,
(v) $\quad\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right) \rightarrow F x_{1} \ldots x_{n}=F y_{1} \ldots y_{n}$,
with the following restrictions on the variables and symbols of $L: x, y, z$ are distinct in (ii) and (iii); in (iv), $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}$ are distinct and $R \in L^{\mathrm{r}}$ is m-ary; in $(\mathrm{v}), x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ are distinct, and $F \in L^{\mathrm{f}}$ is n-ary. Note that (i) represents an axiom scheme rather than a single axiom, since different variables x give different formulas $x=x$. Likewise with (ii)-(v).

Let x and y be distinct variables, and let $\varphi(y)$ be the formula $\exists x(x \neq y)$. Then $\varphi(y)$ is valid in all \mathcal{A} with $|A|>1$, but $\varphi(x / y)$ is invalid in all \mathcal{A}. Thus substituting x for the free occurrences of y does not always preserve validity. To get rid of this anomaly, we introduce the following restriction on substitutions of a term t for free occurrences of y.

Definition. We say that t is free for y in φ, if no variable in t can become bound upon replacing the free occurrences of y in φ by t, more precisely: whenever x is a variable in t, then there are no occurrences of subformulas in φ of the form $\exists x \psi$ or $\forall x \psi$ that contain an occurrence of y that is free in φ.

Note that if t is variable-free, then t is free for y in φ. We remark that "free for" abbreviates "free to be substituted for." In exercise 3 the reader is asked to show that, with this restriction, substitution of a term for the free occurrences of a variable does preserve validity.

Definition. The quantifier axioms of L are the formulas $\varphi(t / y) \rightarrow \exists y \varphi$ and $\forall y \varphi \rightarrow \varphi(t / y)$ where t is free for y in φ.

These axioms have been chosen to have the following property.
Proposition 2.7.1. The logical axioms of L are valid in every L-structure.
We first prove this for the propositional axioms of L. Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct propositional atoms not in L. Let $p=p\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \operatorname{Prop}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Let $\varphi_{1}, \ldots, \varphi_{n}$ be formulas and let $p\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ be the word obtained by replacing each occurrence of α_{i} in p by φ_{i} for $i=1, \ldots, n$. One checks easily that $p\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ is a formula.

Lemma 2.7.2. Suppose $\varphi_{i}=\varphi_{i}\left(x_{1}, \ldots, x_{m}\right)$ for $1 \leq i \leq n$ and let $a_{1}, \ldots, a_{m} \in$ A. Define a truth assignment $t:\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \longrightarrow\{0,1\}$ by $t\left(\alpha_{i}\right)=1$ iff $\mathcal{A} \models \varphi_{i}\left(\underline{a}_{1}, \ldots, \underline{a}_{m}\right)$. Then $p\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ is an L-formula and

$$
\begin{aligned}
p\left(\varphi_{1}, \ldots, \varphi_{n}\right)\left(\underline{a}_{1} / x_{1}, \ldots, \underline{a}_{m} / x_{m}\right) & =p\left(\varphi_{1}\left(\underline{a}_{1}, \ldots, \underline{a}_{m}\right), \ldots, \varphi_{n}\left(\underline{a}_{1}, \ldots, \underline{a}_{m}\right)\right) \\
t\left(p\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)=1 \Longleftrightarrow \mathcal{A} & \models p\left(\varphi_{1}\left(\underline{a}_{1}, \ldots, \underline{a}_{m}\right), \ldots, \varphi_{n}\left(\underline{a}_{1}, \ldots, \underline{a}_{m}\right)\right)
\end{aligned}
$$

In particular, if p is a tautology, then $\mathcal{A} \vDash p\left(\varphi_{1}, \ldots, \varphi_{n}\right)$.
Proof. Easy induction on p. We leave the details to the reader.
Definition. An L-tautology is a formula of the form $p\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ for some tautology $p\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \operatorname{Prop}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and some formulas $\varphi_{1}, \ldots, \varphi_{n}$.

By Lemma 2.7.2 all L-tautologies are valid in all L-structures. The propositional axioms of L are L-tautologies, so all propositional axioms of L are valid in all L-structures. It is easy to check that all equality axioms of L are valid in all L-structures. In exercise 4 below the reader is asked to show that all quantifier axioms of L are valid in all L-structures. This finishes the proof of Proposition 2.7.1.

Next we introduce rules for deriving new formulas from given formulas.
Definition. The logical rules of L are the following:
(i) Modus Ponens (MP): From φ and $\varphi \rightarrow \psi$, infer ψ.
(ii) Generalization Rule (G): If the variable x does not occur free in φ, then
(a) from $\varphi \rightarrow \psi$, infer $\varphi \rightarrow \forall x \psi$;
(b) from $\psi \rightarrow \varphi$, infer $\exists x \psi \rightarrow \varphi$.

A key property of the logical rules is that their application preserves validity. Here is a more precise statement of this fact, to be verified by the reader.
(i) If $\mathcal{A} \models \varphi$ and $\mathcal{A} \models \varphi \rightarrow \psi$, then $\mathcal{A} \models \psi$.
(ii) Suppose x does not occur free in φ. Then
(a) if $\mathcal{A} \models \varphi \rightarrow \psi$, then $\mathcal{A}=\varphi \rightarrow \forall x \psi$;
(b) if $\mathcal{A} \models \psi \rightarrow \varphi$, then $\mathcal{A}=\exists x \psi \rightarrow \varphi$.

Definition. A formal proof, or just proof, of φ from Σ is a sequence $\varphi_{1}, \ldots, \varphi_{n}$ of formulas with $n \geq 1$ and $\varphi_{n}=\varphi$, such that for $k=1, \ldots, n$:
(i) either $\varphi_{k} \in \Sigma$,
(ii) or φ_{k} is a logical axiom,
(iii) or there are $i, j \in\{1, \ldots, k-1\}$ such that φ_{k} can be inferred from φ_{i} and φ_{j} by MP, or from φ_{i} by G.
We say that Σ proves φ (notation: $\Sigma \vdash \varphi$) if there exists a proof of φ from Σ.
Proposition 2.7.3. If $\Sigma \vdash \varphi$, then $\Sigma \models \varphi$.
This follows easily from earlier facts that we stated and which the reader was asked to verify. The converse is more interesting, and due to Gödel (1930):

Theorem 2.7.4 (Completeness Theorem of Predicate Logic).

$$
\Sigma \vdash \varphi \Longleftrightarrow \Sigma \models \varphi
$$

Remark. Our choice of proof system, and thus our notion of formal proof is somewhat arbitrary. However the equivalence of \vdash and \models (Completeness Theorem) justifies our choice of logical axioms and rules and shows in particular that no further logical axioms and rules are needed. Moreover, this equivalence has consequences that can be stated in terms of \models alone. An example is the important Compactness Theorem.

Theorem 2.7.5 (Compactness Theorem). If $\Sigma \models \sigma$, then there is a finite subset Σ_{0} of Σ such that $\Sigma_{0} \models \sigma$.

The Compactness Theorem has many consequences. Here is one.
Corollary 2.7.6. Suppose σ is an $L_{\text {Ring }}$-sentence that holds in all fields of characteristic 0 . Then there exists a natural number N such that σ is true in all fields of characteristic $p>N$.

Proof. By assumption,

$$
\mathrm{Fl}(0)=\mathrm{Fl} \cup\{n 1 \neq 0: n=2,3,5, \ldots\} \models \sigma
$$

Then by Compactness, there is $N \in \mathbf{N}$ such that

$$
\mathrm{Fl} \cup\{n 1 \neq 0: n=2,3,5,, \ldots, n \leq N\} \models \sigma
$$

It follows that σ is true in all fields of characteristic $p>N$.
The converse of this corollary fails, see exercise 9 below. Note that $\operatorname{Fl}(0)$ is infinite. Could there be an alternative finite set of axioms whose models are exactly the fields of characteristic 0 ?

Corollary 2.7.7. There is no finite set of $L_{\text {Ring }}$-sentences whose models are exactly the fields of characteristic 0 .

Proof. Suppose there is such a finite set of sentences $\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$. Let $\sigma:=$ $\sigma_{1} \wedge \cdots \wedge \sigma_{N}$. Then the models of σ are just the fields of characteristic 0 . By the previous result σ holds in some field of characteristic $p>0$. Contradiction!

Exercises. The conventions made at the beginning of Section 2.6 about L, \mathcal{A}, t, $\varphi, \psi, \sigma, \Sigma$ remain in force! All but the last two exercises to be done without using Theorem 2.7.4 or 2.7.5. Actually, (4) and (7) will be used in proving Theorem 2.7.4.
(1) Let $L=\{R\}$ where R is a binary relation symbol, and let $\mathcal{A}=(A ; R)$ be a finite L-structure (i. e. the set A is finite). Then there exists an L-sentence σ such that the models of σ are exactly the L-structures isomorphic to \mathcal{A}. (In fact, for an arbitrary language L, two finite L-structures are isomorphic iff they satisfy the same L-sentences.)
(2) Let φ and ψ be L-formulas, x, y variables, and t an L-term.
(a) If φ is atomic, then t is free for x in φ.
(b) t is free for x in $\neg \varphi$ iff t is free for x in φ.
(c) t is free for x in $\varphi \vee \psi$ iff t is free for x in φ and in ψ; and t is free for x in $\varphi \wedge \psi$ iff t is free for x in φ and in ψ.
(d) t is free for x in $\exists y \varphi$ iff either x and y are different and t is free for x in φ, or x and y are the same; likewise with $\forall y \varphi$.
(3) If t is free for y in φ and φ is valid in \mathcal{A}, then $\varphi(t / y)$ is valid in \mathcal{A}.
(4) Suppose t is free for y in $\varphi=\varphi\left(x_{1}, \ldots, x_{n}, y\right)$. Then:
(i) Each \mathcal{A}-instance of the quantifier axiom $\varphi(t / y) \rightarrow \exists y \varphi$ has the form

$$
\varphi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}, \tau\right) \rightarrow \exists y \varphi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}, y\right)
$$

with $a_{1}, \ldots, a_{n} \in A$ and τ a variable-free L_{A}-term.
(ii) The quantifier axiom $\varphi(t / y) \rightarrow \exists y \varphi$ is valid in \mathcal{A}. (Hint: use Lemma 2.6.2.)
(iii) The quantifier axiom $\forall y \varphi \rightarrow \varphi(t / y)$ is valid in \mathcal{A}.
(5) If φ is an L-tautology, then $\vdash \varphi$.
(6) $\Sigma \vdash \varphi_{i}$ for $i=1, \ldots, n \Longleftrightarrow \Sigma \vdash \varphi_{1} \wedge \cdots \wedge \varphi_{n}$.
(7) If $\Sigma \vdash \varphi \rightarrow \psi$ and $\Sigma \vdash \psi \rightarrow \varphi$, then $\Sigma \vdash \varphi \leftrightarrow \psi$.
(8) $\vdash \neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$ and $\vdash \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$.
(9) Indicate an $L_{\text {Ring }}$-sentence that is true in the field of real numbers, but false in all fields of positive characteristic.
(10) Let σ be an L_{Ab}-sentence which holds in all non-trivial torsion free abelian groups. Then there exists $N \in \mathbf{N}$ such that σ is true in all groups $\mathbf{Z} / p \mathbf{Z}$ where p is a prime number and $p>N$.
(11) Suppose Σ has arbitrarily large finite models. Then Σ has an infinite model. (Here "finite" and "infinite" refer to the underlying set of the model.)

Chapter 3

The Completeness Theorem

In this chapter we prove the Completeness Theorem. As a byproduct we also derive some more elementary facts about predicate logic. The last section contains some of the basics of universal algebra, which we can treat here rather efficiently using our construction of a so-called term-model in the proof of the Completeness Theorem.

Conventions on the use of $L, \mathcal{A}, t, \varphi, \psi, \theta, \sigma$ and Σ are as in the beginning of Section 2.6.

3.1 Another Form of Completeness

It is convenient to prove first a variant of the Completeness Theorem.
Definition. We say that Σ is consistent if $\Sigma \nvdash \perp$, and otherwise (that is, if $\Sigma \vdash \perp$), we call Σ inconsistent.

Theorem 3.1.1 (Completeness Theorem - second form).
Σ is consistent if and only if Σ has a model.
We first show that this second form of the Completeness Theorem implies the first form. This will be done through a series of technical lemmas, which are also useful later in this Chapter.

Lemma 3.1.2. Suppose $\Sigma \vdash \varphi$. Then $\Sigma \vdash \forall x \varphi$.
Proof. From $\Sigma \vdash \varphi$ and the L-tautology $\varphi \rightarrow(\neg \forall x \varphi \rightarrow \varphi)$ we obtain $\Sigma \vdash$ $\neg \forall x \varphi \rightarrow \varphi$ by MP. Then by G we have $\Sigma \vdash \neg \forall x \varphi \rightarrow \forall x \varphi$. Using the L tautology $(\neg \forall x \varphi \rightarrow \forall x \varphi) \rightarrow \forall x \varphi$ and MP we get $\Sigma \vdash \forall x \varphi$.

Lemma 3.1.3 (Deduction Lemma). Suppose $\Sigma \cup\{\sigma\} \vdash \varphi$. Then $\Sigma \vdash \sigma \rightarrow \varphi$.
Proof. By induction on the length of a proof of φ from $\Sigma \cup\{\sigma\}$.
The cases where φ is a logical axiom, or $\varphi \in \Sigma \cup\{\sigma\}$, or φ is obtained by MP are treated just as in the proof of the Deduction Lemma of Propositional Logic.

Suppose that φ is obtained by part (a) of G, so φ is $\varphi_{1} \rightarrow \forall x \psi$ where x does not occur free in φ_{1} and $\Sigma \cup\{\sigma\} \vdash \varphi_{1} \rightarrow \psi$, and where we assume inductively that $\Sigma \vdash \sigma \rightarrow\left(\varphi_{1} \rightarrow \psi\right)$. We have to argue that then $\Sigma \vdash \sigma \rightarrow\left(\varphi_{1} \rightarrow \forall x \psi\right)$. From the L-tautology $\left(\sigma \rightarrow\left(\varphi_{1} \rightarrow \psi\right)\right) \rightarrow\left(\left(\sigma \wedge \varphi_{1}\right) \rightarrow \psi\right)$ and MP we get $\Sigma \vdash$ $\left(\sigma \wedge \varphi_{1}\right) \rightarrow \psi$. Since x does not occur free in $\sigma \wedge \varphi_{1}$ this gives $\Sigma \vdash\left(\sigma \wedge \varphi_{1}\right) \rightarrow \forall x \psi$, by G. Using the L-tautology

$$
\left(\left(\sigma \wedge \varphi_{1}\right) \rightarrow \forall x \psi\right) \rightarrow\left(\sigma \rightarrow\left(\varphi_{1} \rightarrow \forall x \psi\right)\right)
$$

and MP this gives $\Sigma \vdash \sigma \rightarrow\left(\varphi_{1} \rightarrow \forall x \psi\right)$.
The case that φ is obtained by part (b) of G is left to the reader.
Corollary 3.1.4. Suppose $\Sigma \cup\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \vdash \varphi$. Then $\Sigma \vdash \sigma_{1} \wedge \ldots \wedge \sigma_{n} \rightarrow \varphi$.
We leave the proof as an exercise.
Corollary 3.1.5. $\Sigma \vdash \sigma$ if and only if $\Sigma \cup\{\neg \sigma\}$ is inconsistent.
The proof is just like that of the corresponding fact of Propositional Logic.
Lemma 3.1.6. $\Sigma \vdash \forall y \varphi$ if and only if $\Sigma \vdash \varphi$.
Proof. (\Leftarrow) This is Lemma 3.1.2. For (\Rightarrow), assume $\Sigma \vdash \forall y \varphi$. We have the quantifier axiom $\forall y \varphi \rightarrow \varphi$, so by MP we get $\Sigma \vdash \varphi$.
Corollary 3.1.7. $\Sigma \vdash \forall y_{1} \ldots \forall y_{n} \varphi$ if and only if $\Sigma \vdash \varphi$.
Corollary 3.1.8. The second form of the Completeness Theorem implies the first form, Theorem 2.7.4.

Proof. Assume the second form of the Completeness Theorem holds, and that $\Sigma \models \varphi$. It suffices to show that then $\Sigma \vdash \varphi$. From $\Sigma \models \varphi$ we obtain $\Sigma \models$ $\forall y_{1} \ldots \forall y_{n} \varphi$ where $\varphi=\varphi\left(y_{1}, \ldots, y_{n}\right)$, and so $\Sigma \cup\{\neg \sigma\}$ has no model where σ is the sentence $\forall y_{1} \ldots \forall y_{n} \varphi$. But then by the $2^{\text {nd }}$ form of the Completeness Theorem $\Sigma \cup\{\neg \sigma\}$ is inconsistent. Then by Corollary 3.1.5 we have $\Sigma \vdash \sigma$ and thus by Corollary 3.1.7 we get $\Sigma \vdash \varphi$.

We finish this section with another form of the Compactness Theorem:
Theorem 3.1.9 (Compactness Theorem - second form).
If each finite subset of Σ has a model, then Σ has a model.
This follows from the second form of the Completeness Theorem.

3.2 Proof of the Completeness Theorem

We are now going to prove Theorem 3.1.1. Since (\Leftarrow) is clear, we focus our attention on (\Rightarrow), that is, given a consistent set of sentences Σ we must show that Σ has a model. This job will be done in a series of lemmas. Unless we say so, we do not assume in those lemmas that Σ is consistent.

Lemma 3.2.1. Suppose $\Sigma \vdash \varphi$ and t is free for x in φ. Then $\Sigma \vdash \varphi(t / x)$.
Proof. From $\Sigma \vdash \varphi$ we get $\Sigma \vdash \forall x \varphi$ by Lemma 3.1.2. Then MP together with the quantifier axiom $\forall x \varphi \rightarrow \varphi(t / x)$ gives $\Sigma \vdash \varphi(t / x)$ as required.

Lemma 3.2.2. Suppose $\Sigma \vdash \varphi$, let x_{1}, \ldots, x_{n} be distinct variables, and let t_{1}, \ldots, t_{n} be terms whose variables do not occur bound in φ. Then

$$
\Sigma \vdash \varphi\left(t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right)
$$

Proof. Take distinct variables y_{1}, \ldots, y_{n} that do not occur in φ or t_{1}, \ldots, t_{n} and that are distinct from x_{1}, \ldots, x_{n}. Use Lemma 3.2.1 n times in succession to obtain $\Sigma \vdash \psi$ where $\psi=\varphi\left(y_{1} / x_{1}, \ldots, y_{n} / x_{n}\right)$. Apply Lemma 3.2.1 again n times to get $\Sigma \vdash \psi\left(t_{1} / y_{1}, \ldots, t_{n} / y_{n}\right)$. To finish, observe that $\psi\left(t_{1} / y_{1}, \ldots, t_{n} / y_{n}\right)=$ $\varphi\left(t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right)$.

Lemma 3.2.3. Let $t, t^{\prime}, t_{1}, \ldots, t_{1}^{\prime}, \ldots$ be L-terms.
(1) $\vdash t=t$.
(2) If $\Sigma \vdash t=t^{\prime}$, then $\Sigma \vdash t^{\prime}=t$.
(3) If $\Sigma \vdash t_{1}=t_{2}$ and $\Sigma \vdash t_{2}=t_{3}$, then $\Sigma \vdash t_{1}=t_{3}$.
(4) Let $R \in L^{\mathrm{r}}$ be m-ary and suppose $\Sigma \vdash t_{i}=t_{i}^{\prime}$ for $i=1, \ldots, m$ and $\Sigma \vdash R t_{1} \ldots t_{m}$. Then $\Sigma \vdash R t_{1}^{\prime} \ldots t_{m}^{\prime}$.
(5) Let $F \in L^{\mathrm{f}}$ be n-ary, and suppose $\Sigma \vdash t_{i}=t_{i}^{\prime}$ for $i=1, \ldots, n$. Then $\Sigma \vdash F t_{1} \ldots t_{n}=F t_{1}^{\prime} \ldots t_{n}^{\prime}$.

Proof. For (1), take an equality axiom $x=x$ and apply Lemma 3.2.1. For (2), we take an equality axiom $x=y \rightarrow y=x$, apply Lemma 3.2 .2 to obtain $\vdash t=t^{\prime} \rightarrow t^{\prime}=t$, and use MP. For (3), take an equality axiom

$$
(x=y \wedge y=z) \rightarrow(x=z)
$$

apply Lemma 3.2 .2 to get $\vdash\left(t_{1}=t_{2} \wedge t_{2}=t_{3}\right) \rightarrow t_{1}=t_{3}$, use Exercise 6 in Section 2.7 and MP. To prove (4), take an equality axiom

$$
x_{1}=y_{1} \wedge \ldots \wedge x_{m}=y_{m} \wedge R x_{1} \ldots x_{m} \rightarrow R y_{1} \ldots y_{m}
$$

apply Lemma 3.2.2 to obtain

$$
\Sigma \vdash t_{1}=t_{1}^{\prime} \wedge \ldots \wedge t_{m}=t_{m}^{\prime} \wedge R t_{1} \ldots t_{m} \rightarrow R t_{1}^{\prime} \ldots t_{m}^{\prime}
$$

and use Exercise 6 as before, and MP. Part (5) is obtained similarly by taking an equality axiom $x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow F x_{1} \ldots x_{n}=F y_{1} \ldots y_{n}$.

Definition. Let Term_{L} be the set of variable-free L-terms. We define a binary relation \sim_{Σ} on Term_{L} by

$$
t_{1} \sim_{\Sigma} t_{2} \Longleftrightarrow \Sigma \vdash t_{1}=t_{2}
$$

Parts (1), (2) and (3) of the last lemma yield the following.

Lemma 3.2.4. The relation \sim_{Σ} is an equivalence relation on Term_{L}.
Definition. Suppose L has at least one constant symbol. Then Term L_{L} is nonempty. We define the L-structure \mathcal{A}_{Σ} as follows:
(i) Its underlying set is $A_{\Sigma}:=\operatorname{Term}_{L} / \sim_{\Sigma}$. Let $[t]$ denote the equivalence class of $t \in \operatorname{Term}_{L}$ with respect to \sim_{Σ}.
(ii) If $R \in L^{\mathrm{r}}$ is m-ary, then $R^{\mathcal{A}_{\Sigma}} \subseteq A_{\Sigma}^{m}$ is given by

$$
\left(\left[t_{1}\right], \ldots,\left[t_{m}\right]\right) \in R^{\mathcal{A}_{\Sigma}}: \Longleftrightarrow \Sigma \vdash R t_{1} \ldots t_{m} \quad\left(t_{1}, \ldots, t_{m} \in \operatorname{Term}_{L}\right)
$$

(iii) If $F \in L^{\mathrm{f}}$ is n-ary, then $F^{\mathcal{A}_{\Sigma}}: A_{\Sigma}^{n} \rightarrow A_{\Sigma}$ is given by

$$
F^{\mathcal{A}_{\Sigma}}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)=\left[F t_{1} \ldots t_{n}\right] \quad\left(t_{1}, \ldots, t_{n} \in \operatorname{Term}_{L}\right)
$$

Remark. The reader should verify that this counts as a definition, that is: in (ii), whether or not $\Sigma \vdash R t_{1} \ldots t_{m}$ depends only on ($\left[t_{1}\right], \ldots,\left[t_{m}\right]$), not on $\left(t_{1}, \ldots, t_{m}\right)$; in (iii), $\left[F t_{1} \ldots t_{n}\right]$ depends likewise only on ($\left[t_{1}\right], \ldots,\left[t_{n}\right]$). (Use parts (4) and (5) of Lemma 3.2.3.)

Corollary 3.2.5. Suppose L has a constant symbol, and Σ is consistent. Then
(1) for each $t \in \operatorname{Term}_{L}$ we have $t^{\mathcal{A}_{\Sigma}}=[t]$;
(2) for each atomic σ we have: $\Sigma \vdash \sigma \Longleftrightarrow \mathcal{A}_{\Sigma} \models \sigma$.

Proof. Part (1) follows by an easy induction. Let σ be $R t_{1} \ldots t_{m}$ where $R \in L^{\mathrm{r}}$ is m-ary and $t_{1}, \ldots, t_{m} \in \operatorname{Term}_{L}$. Then

$$
\Sigma \vdash R t_{1} \ldots t_{m} \Leftrightarrow\left(\left[t_{1}\right], \ldots,\left[t_{m}\right]\right) \in R^{\mathcal{A}_{\Sigma}} \Leftrightarrow \mathcal{A}_{\Sigma} \models R t_{1} \ldots t_{m}
$$

where the last " \Leftrightarrow " follows from the definition of \models together with part (1). Now suppose that σ is $t_{1}=t_{2}$ where $t_{1}, t_{2} \in \operatorname{Term}_{L}$. Then

$$
\Sigma \vdash t_{1}=t_{2} \Leftrightarrow\left[t_{1}\right]=\left[t_{2}\right] \Leftrightarrow t_{1}^{\mathcal{A}_{\Sigma}}=t_{2}^{\mathcal{A}_{\Sigma}} \Leftrightarrow \mathcal{A}_{\Sigma} \models t_{1}=t_{2}
$$

We also have $\Sigma \vdash \top \Leftrightarrow \mathcal{A}_{\Sigma} \models T$. So far we haven't used the assumption that Σ is consistent, but now we do. The consistency of Σ means that $\Sigma \nvdash \perp$. We also have $\mathcal{A}_{\Sigma} \not \vDash \perp$ by definition of \models. Thus $\Sigma \vdash \perp \Leftrightarrow \mathcal{A}_{\Sigma} \models \perp$.

If the equivalence in part (2) of this corollary holds for all σ (not only for atomic σ), then $\mathcal{A}_{\Sigma} \models \Sigma$, so we would have found a model of Σ, and be done. But clearly this equivalence can only hold for all σ if Σ has the property that for each σ, either $\Sigma \vdash \sigma$ or $\Sigma \vdash \neg \sigma$. This property is of interest for other reasons as well, and deserves a name:

Definition. We say that Σ is complete if Σ is consistent, and for each σ either $\Sigma \vdash \sigma$ or $\Sigma \vdash \neg \sigma$.

Example. Let $L=L_{\mathrm{Ab}}, \Sigma:=\mathrm{Ab}$ (the set of axioms for abelian groups), and σ the sentence $\exists x(x \neq 0)$. Then $\Sigma \nvdash \sigma$ since the trivial group doesn’t satisfy σ. Also $\Sigma \nvdash \neg \sigma$, since there are non-trivial abelian groups and σ holds in such groups. Thus Σ is not complete.

Completeness is a strong property and it can be hard to show that a given set of axioms is complete. The set of axioms for algebraically closed fields of characteristic 0 is complete (see the end of Section 4.3).

A key fact about completeness needed in this chapter is that any consistent set of sentences extends to a complete set of sentences:

Lemma 3.2.6 (Lindenbaum). If Σ is consistent, then $\Sigma \subseteq \Sigma^{\prime}$ for some complete set Σ^{\prime} of L-sentences.

The proof uses Zorn's Lemma, and is just like that of the corresponding fact of Propositional Logic in Section 1.2.

Completeness of Σ does not guarantee that the equivalence of part (2) of Corollary 3.2.5 holds for all σ. Completeness is only a necessary condition for this equivalence to hold for all σ; another necessary condition is "to have witnesses":

Definition. A Σ-witness for the sentence $\exists x \varphi(x)$ is a term $t \in \operatorname{Term}_{L}$ such that $\Sigma \vdash \varphi(t)$. We say that Σ has witnesses if there is a Σ-witness for every sentence $\exists x \varphi(x)$ proved by Σ.

Theorem 3.2.7. Let L have a constant symbol, and suppose Σ is consistent. Then the following two conditions are equivalent:
(i) For each σ we have: $\Sigma \vdash \sigma \Leftrightarrow \mathcal{A}_{\Sigma} \models \sigma$.
(ii) Σ is complete and has witnesses.

In particular, if Σ is complete and has witnesses, then \mathcal{A}_{Σ} is a model of Σ.
Proof. It should be clear that (i) implies (ii). For the converse, assume (ii). We use induction on the number of logical symbols in σ to obtain (i). We already know that (i) holds for atomic sentences. The cases that $\sigma=\neg \sigma_{1}, \sigma=\sigma_{1} \vee \sigma_{2}$, and $\sigma=\sigma_{1} \wedge \sigma_{2}$ are treated just as in the proof of the corresponding Lemma 2.2.12 for Propositional Logic. It remains to consider two cases:

Case $\sigma=\exists x \varphi(x)$:
(\Rightarrow) Suppose that $\Sigma \vdash \sigma$. Because we are assuming that Σ has witnesses we have a $t \in \operatorname{Term}_{L}$ such that $\Sigma \vdash \varphi(t)$. Then by the inductive hypothesis $\mathcal{A}_{\Sigma} \models \varphi(t)$. So by Lemma 2.6 .2 we have an $a \in A_{\Sigma}$ such that $\mathcal{A}_{\Sigma} \vDash \varphi(\underline{a})$. Therefore $\mathcal{A}_{\Sigma} \models \exists x \varphi(x)$, hence $\mathcal{A}_{\Sigma} \models \sigma$.
(\Leftarrow) Assume $\mathcal{A}_{\Sigma} \models \sigma$. Then there is an $a \in A_{\Sigma}$ such that $\mathcal{A}_{\Sigma} \models \varphi(\underline{a})$. Choose $t \in \operatorname{Term}_{L}$ such that $[t]=a$. Then $t^{\mathcal{A}_{\Sigma}}=a$, hence $\mathcal{A}_{\Sigma} \models \varphi(t)$ by Lemma 2.6.2. Applying the inductive hypothesis we get $\Sigma \vdash \varphi(t)$. This yields $\Sigma \vdash \exists x \varphi(x)$ by MP and the quantifier axiom $\varphi(t) \rightarrow \exists x \varphi(x)$.
Case $\sigma=\forall x \varphi(x)$: This is similar to the previous case but we also need the result from Exercise 8 in Section 2.7 that $\vdash \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$.
We call attention to some new notation in the next lemmas: the symbol \vdash_{L} is used to emphasize that we are dealing with formal provability within L.
Lemma 3.2.8. Let Σ be a set of L-sentences, c a constant symbol not in L, and $L_{c}:=L \cup\{c\}$. Let $\varphi(y)$ be an L-formula and suppose $\Sigma \vdash_{L_{c}} \varphi(c)$. Then $\Sigma \vdash_{L} \varphi(y)$.

Proof. (Sketch) Take a proof of $\varphi(c)$ from Σ in the language L_{c}, and take a variable z different from all variables occurring in that proof, and also such that $z \neq y$. Replace in every formula in this proof each occurrence of c by z. Check that one obtains in this way a proof of $\varphi(z / y)$ in the language L from Σ. So $\Sigma \vdash_{L} \varphi(z / y)$ and hence by Lemma 3.2.1 we have $\Sigma \vdash_{L} \varphi(z / y)(y / z)$, that is, $\Sigma \vdash_{L} \varphi(y)$.

Lemma 3.2.9. Assume Σ is consistent and $\Sigma \vdash \exists y \varphi(y)$. Let c be a constant symbol not in L. Put $L_{c}:=L \cup\{c\}$. Then $\Sigma \cup\{\varphi(c)\}$ is a consistent set of L_{c}-sentences.

Proof. Suppose not. Then $\Sigma \cup\{\varphi(c)\} \vdash_{L_{c}} \perp$. By the Deduction Lemma (3.1.3) $\Sigma \vdash_{L_{c}} \varphi(c) \rightarrow \perp$. Then by Lemma 3.2.8 we have $\Sigma \vdash_{L} \varphi(y) \rightarrow \perp$. By G we have $\Sigma \vdash_{L} \exists y \varphi(y) \rightarrow \perp$. Applying MP yields $\Sigma \vdash \perp$, contradicting the consistency of Σ.

Lemma 3.2.10. Suppose Σ is consistent. Let $\sigma_{1}=\exists x_{1} \varphi_{1}\left(x_{1}\right), \ldots, \sigma_{n}=$ $\exists x_{n} \varphi_{n}\left(x_{n}\right)$ be such that $\Sigma \vdash \sigma_{i}$ for every $i=1, \ldots, n$. Let c_{1}, \ldots, c_{n} be distinct constant symbols not in L. Put $L^{\prime}:=L \cup\left\{c_{1}, \ldots, c_{n}\right\}$ and $\Sigma^{\prime}=$ $\Sigma \cup\left\{\varphi_{1}\left(c_{1}\right), \ldots, \varphi_{n}\left(c_{n}\right)\right\}$. Then Σ^{\prime} is a consistent set of L^{\prime}-sentences.

Proof. The previous lemma covers the case $n=1$. The general case follows by induction on n.

In the next lemma we use a superscript " w " for "witness."
Lemma 3.2.11. Suppose Σ is consistent. For each L-sentence $\sigma=\exists x \varphi(x)$ such that $\Sigma \vdash \sigma$, let c_{σ} be a constant symbol not in L such that if σ^{\prime} is a different L-sentence of the form $\exists x^{\prime} \varphi^{\prime}\left(x^{\prime}\right)$ provable from Σ, then $c_{\sigma} \neq c_{\sigma^{\prime}}$. Put

$$
\begin{aligned}
L^{w} & :=L \cup\left\{c_{\sigma}: \sigma=\exists x \varphi(x) \text { is an L-sentence such that } \Sigma \vdash \sigma\right\} \\
\Sigma^{w} & :=\Sigma \cup\left\{\varphi\left(c_{\sigma}\right): \sigma=\exists x \varphi(x) \text { is an L-sentence such that } \Sigma \vdash \sigma\right\}
\end{aligned}
$$

Then Σ^{w} is a consistent set of L^{w}-sentences.
Proof. Suppose not. Then $\Sigma^{w} \vdash \perp$. Take a proof of \perp from Σ^{w} and let $c_{\sigma_{1}}, \ldots, c_{\sigma_{n}}$ be constant symbols in $L^{w} \backslash L$ such that this proof is a proof of \perp in the language $L \cup\left\{c_{\sigma_{1}}, \ldots, c_{\sigma_{n}}\right\}$ from $\Sigma \cup\left\{\varphi_{1}\left(c_{\sigma_{1}}\right), \ldots, \varphi_{n}\left(c_{\sigma_{n}}\right)\right\}$, where $\sigma_{i}=\exists x_{i} \varphi_{i}\left(x_{i}\right)$ for $1 \leq i \leq n$. So $\Sigma \cup\left\{\varphi_{1}\left(c_{\sigma_{1}}\right), \ldots, \varphi_{n}\left(c_{\sigma_{n}}\right)\right\}$ is an inconsistent set of $L \cup\left\{c_{\sigma_{1}}, \ldots, c_{\sigma_{n}}\right\}$-sentences. This contradicts Lemma 3.2.10.

Lemma 3.2.12. Let $L_{0} \subseteq L_{1} \subseteq L_{2} \subseteq \ldots$ be an increasing sequence $\left(L_{n}\right)$ of languages, and set $L_{\infty}:=\bigcup_{n} L_{n}$. Let Σ_{n} be a consistent set of L_{n}-sentences, for each n, such that $\Sigma_{0} \subseteq \Sigma_{1} \subseteq \Sigma_{2} \ldots$. Then the union $\Sigma_{\infty}:=\bigcup_{n} \Sigma_{n}$ is a consistent set of L_{∞}-sentences.

Proof. Suppose that $\Sigma_{\infty} \vdash \perp$. Take a proof of \perp from Σ_{∞}. Then we can choose n so large that this is actually a proof of \perp from Σ_{n} in L_{n}. This contradicts the consistency of Σ_{n}.

Suppose the language L^{*} extends L, let \mathcal{A} be an L-structure, and let \mathcal{A}^{*} be an L^{*}-structure. Then \mathcal{A} is said to be a reduct of \mathcal{A}^{*} (and \mathcal{A}^{*} an expansion of \mathcal{A}) if \mathcal{A} and \mathcal{A}^{*} have the same underlying set and the same interpretations of the symbols of L. For example, ($\mathbf{N} ; 0,+$) is a reduct of $(\mathbf{N} ;<, 0,1,+, \cdot)$. Note that any L^{*}-structure \mathcal{A}^{*} has a unique reduct to an L-structure, which we indicate by $\left.\mathcal{A}^{*}\right|_{L} \mathrm{~A}$ key fact (to be verified by the reader) is that if \mathcal{A} is a reduct of \mathcal{A}^{*}, then $t^{\mathcal{A}}=t^{\mathcal{A}^{*}}$ for all variable-free L_{A}-terms t, and

$$
\mathcal{A} \models \sigma \Longleftrightarrow \mathcal{A}^{*} \models \sigma
$$

for all L_{A}-sentences σ.
We can now prove Theorem 3.1.1.
Proof. Let Σ be a consistent set of L-sentences. We construct a sequence (L_{n}) of languages and a sequence $\left(\Sigma_{n}\right)$ where each Σ_{n} is a consistent set of $L_{n}{ }^{-}$ sentences. We begin by setting $L_{0}=L$ and $\Sigma_{0}=\Sigma$. Given the language L_{n} and the consistent set of L_{n}-sentences Σ_{n}, put

$$
L_{n+1}:= \begin{cases}L_{n} & \text { if } n \text { is even }, \\ L_{n}^{w} & \text { if } n \text { is odd, }\end{cases}
$$

choose a complete set of L_{n}-sentences $\Sigma_{n}^{\prime} \supseteq \Sigma_{n}$, and put

$$
\Sigma_{n+1}:= \begin{cases}\Sigma_{n}^{\prime} & \text { if } n \text { is even } \\ \Sigma_{n}^{w} & \text { if } n \text { is odd }\end{cases}
$$

Here L_{n}^{w} and Σ_{n}^{w} are obtained from L_{n} and Σ_{n} in the same way that L^{w} and Σ^{w} are obtained from L and Σ in Lemma 3.2.11. Note that $L_{n} \subseteq L_{n+1}$, and $\Sigma_{n} \subseteq \Sigma_{n+1}$.

By the previous lemma the set Σ_{∞} of L_{∞}-sentences is consistent. It is also complete. To see this, let σ be an L_{∞}-sentence. Take n even and so large that σ is an L_{n}-sentence. Then $\Sigma_{n+1} \vdash \sigma$ or $\Sigma_{n+1} \vdash \neg \sigma$ and thus $\Sigma_{\infty} \vdash \sigma$ or $\Sigma_{\infty} \vdash \neg \sigma$.

We claim that Σ_{∞} has witnesses. To see this, let $\sigma=\exists x \varphi(x)$ be an $L_{\infty^{-}}$ sentence such that $\Sigma_{\infty} \vdash \sigma$. Now take n to be odd and so large that σ is an L_{n}-sentence and $\Sigma_{n} \vdash \sigma$. Then by construction of $\Sigma_{n+1}=\Sigma_{n}^{w}$ we have $\Sigma_{n+1} \vdash \varphi\left(c_{\sigma}\right)$, so $\Sigma_{\infty} \vdash \varphi\left(c_{\sigma}\right)$.

It follows from Theorem 3.2.7 that Σ_{∞} has a model, namely $\mathcal{A}_{\Sigma_{\infty}}$. Put $\mathcal{A}:=\left.\mathcal{A}_{\Sigma_{\infty}}\right|_{L}$. Then $\mathcal{A} \vDash \Sigma$. This concludes the proof of the Completeness Theorem (second form).

Exercises.

(1) Σ is complete if and only if Σ has a model and every two models of Σ satisfy the same sentences.
(2) Let L have just a constant symbol c, a unary relation symbol U and a unary function symbol f, and suppose that $\Sigma \vdash U f c$, and that f does not occur in the sentences of Σ. Then $\Sigma \vdash \forall x U x$.

3.3 Some Elementary Results of Predicate Logic

Here we obtain some generalities of predicate logic: Equivalence and Equality Theorems, Variants, and Prenex Form. In some proofs we shall take advantage of the fact that the Completeness Theorem is now available.

Lemma 3.3.1 (Distribution Rule). We have the following:
(i) Suppose $\Sigma \vdash \varphi \rightarrow \psi$. Then $\Sigma \vdash \exists x \varphi \rightarrow \exists x \psi$ and $\Sigma \vdash \forall x \varphi \rightarrow \forall x \psi$.
(ii) Suppose $\Sigma \vdash \varphi \leftrightarrow \psi$. Then $\Sigma \vdash \exists x \varphi \leftrightarrow \exists x \psi$ and $\Sigma \vdash \forall x \varphi \leftrightarrow \forall x \psi$.

Proof. We only do (i), since (ii) then follows easily. Let \mathcal{A} be a model of Σ. By the Completeness Theorem it suffices to show that then $\mathcal{A} \vDash \exists x \varphi \rightarrow \exists x \psi$ and $\mathcal{A} \models \forall x \varphi \rightarrow \forall x \psi$. We shall prove $\mathcal{A} \models \exists x \varphi \rightarrow \exists x \psi$ and leave the other part to the reader. We have $\mathcal{A} \vDash \varphi \rightarrow \psi$. Choose variables y_{1}, \ldots, y_{n} such that $\varphi=\varphi\left(x, y_{1}, \ldots, y_{n}\right)$ and $\psi=\psi\left(x, y_{1}, \ldots, y_{n}\right)$. We need only show that then for all $a_{1}, \ldots, a_{n} \in A$

$$
\mathcal{A} \models \exists x \varphi\left(x, \underline{a}_{1}, \ldots, \underline{a}_{n}\right) \rightarrow \exists x \psi\left(x, \underline{a}_{1}, \ldots, \underline{a}_{n}\right)
$$

Suppose $\mathcal{A} \models \exists x \varphi\left(x, \underline{a}_{1}, \ldots, \underline{a}_{n}\right)$. This yields $a_{0} \in A$ with $\mathcal{A} \models \varphi\left(\underline{a}_{0}, \underline{a}_{1}, \ldots, \underline{a}_{n}\right)$. From $\mathcal{A} \models \varphi \rightarrow \psi$ we obtain $\mathcal{A} \models \varphi\left(\underline{a}_{0}, \ldots, \underline{a}_{n}\right) \rightarrow \psi\left(\underline{a}_{0}, \ldots, \underline{a}_{n}\right)$, which gives $\mathcal{A} \models \psi\left(\underline{a}_{0}, \ldots, \underline{a}_{n}\right)$, and thus $\mathcal{A} \vDash \exists x \psi\left(x, \underline{a}_{1}, \ldots, \underline{a}_{n}\right)$.

Theorem 3.3.2 (Equivalence Theorem). Let ψ^{\prime} be the result of replacing in the formula ψ some occurrence of a subformula φ by the formula φ^{\prime}, and suppose that $\Sigma \vdash \varphi \leftrightarrow \varphi^{\prime}$. Then ψ^{\prime} is again a formula and $\Sigma \vdash \psi \leftrightarrow \psi^{\prime}$.

Proof. By induction on the number of logical symbols in ψ. If ψ is atomic, then necessarily $\psi=\varphi$ and $\psi^{\prime}=\varphi^{\prime}$ and the desired result holds trivially.
Suppose that $\psi=\neg \theta$. Then either $\psi=\varphi$ and $\psi^{\prime}=\varphi^{\prime}$, and the desired result holds trivially, or the occurrence of φ we are replacing is an occurrence in θ. Then the inductive hypothesis gives $\Sigma \vdash \theta \leftrightarrow \theta^{\prime}$, where θ^{\prime} is obtained by replacing that occurrence (of φ) by φ^{\prime}. Then $\psi^{\prime}=\neg \theta^{\prime}$ and the desired result follows easily. The cases $\psi=\psi_{1} \vee \psi_{2}$ and $\psi=\psi_{1} \wedge \psi_{2}$ are left as exercises.
Suppose that $\psi=\exists x \theta$. The case $\psi=\varphi$ (and thus $\psi^{\prime}=\varphi^{\prime}$) is trivial. Suppose $\psi \neq \varphi$. Then the occurrence of φ we are replacing is an occurrence inside θ. So by inductive hypothesis we have $\Sigma \vdash \theta \leftrightarrow \theta^{\prime}$. Then by the distribution rule $\Sigma \vdash \exists x \theta \leftrightarrow \exists x \theta^{\prime}$. The proof is similar if $\psi=\forall x \theta$.

Definition. We say φ_{1} and φ_{2} are Σ-equivalent if $\Sigma \vdash \varphi_{1} \leftrightarrow \varphi_{2}$. (In case $\Sigma=\emptyset$, we just say equivalent.) One verifies easily that Σ-equivalence is an equivalence relation on the set of L-formulas.

Given a family $\left(\varphi_{i}\right)_{i \in I}$ of formulas with finite index set I we choose a bijection $k \mapsto i(k):\{1, \ldots, n\} \rightarrow I$ and set

$$
\bigvee_{i \in I} \varphi_{i}:=\varphi_{i(1)} \vee \cdots \vee \varphi_{i(n)}, \quad \bigwedge_{i \in I} \varphi_{i}:=\varphi_{i(1)} \wedge \cdots \wedge \varphi_{i(n)}
$$

If I is clear from context we just write $\bigvee_{i} \varphi_{i}$ and $\bigwedge_{i} \varphi_{i}$ instead. Of course, these notations $\bigvee_{i \in I} \varphi_{i}$ and $\bigwedge_{i \in I} \varphi_{i}$ can only be used when the particular choice of bijection of $\{1, \ldots, n\}$ with I does not matter; this is usually the case because the equivalence class of $\varphi_{i(1)} \vee \cdots \vee \varphi_{i(n)}$ does not depend on this choice, and the same is true with " \wedge " instead of " \vee ".

Definition. A variant of a formula is obtained by successive replacements of the following type:
(i) replace an occurrence of a subformula $\exists x \varphi$ by $\exists y \varphi(y / x)$;
(ii) replace an occurrence of a subformula $\forall x \varphi$ by $\forall y \varphi(y / x)$.
where y is free for x in φ and y does not occur free in φ.
Lemma 3.3.3. A formula is equivalent to any of its variants.
Proof. By the Equivalence Theorem (3.3.2) it suffices to show $\vdash \exists x \varphi \leftrightarrow \exists y \varphi(y / x)$ and $\vdash \forall x \varphi \leftrightarrow \forall y \varphi(y / x)$ where y is free for x in φ and does not occur free in φ. We prove the first equivalence, leaving the second as an exercise. Applying G to the quantifier axiom $\varphi(y / x) \rightarrow \exists x \varphi$ gives $\vdash \exists y \varphi(y / x) \rightarrow \exists x \varphi$. Similarly we get $\vdash \exists x \varphi \rightarrow \exists y \varphi(y / x)$ (use that $\varphi=\varphi(y / x)(x / y)$ by the assumption on y). An application of Exercise 7 of Section 2.7 finishes the proof.

Definition. A formula in prenex form is a formula $Q_{1} x_{1} \ldots Q_{n} x_{n} \varphi$ where x_{1}, \ldots, x_{n} are distinct variables, each $Q_{i} \in\{\exists, \forall\}$ and φ is quantifier-free. We call $Q_{1} x_{1} \ldots Q_{n} x_{n}$ the prefix, and φ the matrix of the formula. Note that a quantifier-free formula is in prenex form; this is the case $n=0$.

We leave the proof of the next lemma as an exercise. Instead of "occurrence of ... as a subformula" we say "part ...". In this lemma Q denotes a quantifier, that is, $Q \in\{\exists, \forall\}$, and Q^{\prime} denotes the other quantifier: $\exists^{\prime}=\forall$ and $\forall^{\prime}=\exists$.

Lemma 3.3.4. The following prenex transformations always change a formula into an equivalent formula:
(1) replace the formula by one of its variants;
(2) replace a part $\neg Q x \psi$ by $Q^{\prime} x \neg \psi$;
(3) replace a part $(Q x \psi) \vee \theta$ by $Q x(\psi \vee \theta)$ where x is not free in θ;
(4) replace a part $\psi \vee Q x \theta$ by $Q x(\psi \vee \theta)$ where x is not free in ψ;
(5) replace a part $(Q x \psi) \wedge \theta$ by $Q x(\psi \wedge \theta)$ where x is not free in θ;
(6) replace a part $\psi \wedge Q x \theta$ by $Q x(\psi \wedge \theta)$ where x is not free in ψ.

Remark. Note that the free variables of a formula (those that occur free in the formula) do not change under prenex transformations.

Theorem 3.3.5 (Prenex Form). Every formula can be changed into one in prenex form by a finite sequence of prenex transformations. In particular, each formula is equivalent to one in prenex form.

Proof. By induction on the number of logical symbols. Atomic formulas are already in prenex form. To simplify notation, write $\varphi \Longrightarrow_{\mathrm{pr}} \psi$ to indicate
that ψ can be obtained from φ by a finite sequence of prenex transformations. Assume inductively that

$$
\begin{aligned}
\varphi_{1} & \Longrightarrow{ }_{\mathrm{pr}} Q_{1} x_{1} \ldots Q_{m} x_{m} \psi_{1} \\
\varphi_{2} & \Longrightarrow{ }_{\mathrm{pr}} Q_{m+1} y_{1} \ldots Q_{m+n} y_{n} \psi_{2}
\end{aligned}
$$

where $Q_{1}, \ldots, Q_{m}, \ldots, Q_{m+n} \in\{\exists, \forall\}, x_{1}, \ldots, x_{m}$ are distinct, y_{1}, \ldots, y_{n} are distinct, and ψ_{1} and ψ_{2} are quantifier-free.

Then for $\varphi:=\neg \varphi_{1}$, we have

$$
\varphi \Longrightarrow \Longrightarrow_{\mathrm{pr}} \neg Q_{1} x_{1} \ldots Q_{m} x_{m} \psi_{1} .
$$

Applying m prenex transformations of type (2) we get

$$
\neg Q_{1} x_{1} \ldots Q_{m} x_{m} \psi_{1} \Longrightarrow{ }_{\mathrm{pr}} Q_{1}^{\prime} x_{1} \ldots Q_{m}^{\prime} x_{m} \neg \psi_{1}
$$

hence $\varphi \Longrightarrow_{\mathrm{pr}} Q_{1}^{\prime} x_{1} \ldots Q_{m}^{\prime} x_{m} \neg \psi_{1}$.
Next, let $\varphi:=\varphi_{1} \vee \varphi_{2}$. The assumptions above yield

$$
\varphi \Longrightarrow \Longrightarrow_{\mathrm{pr}}\left(Q_{1} x_{1} \ldots Q_{m} x_{m} \psi_{1}\right) \vee\left(Q_{m+1} y_{1} \ldots Q_{m+n} y_{n} \psi_{2}\right) .
$$

Replacing first $Q_{1} x_{1} \ldots Q_{m} x_{m} \psi_{1}$ by a variant we may assume that

$$
\left\{x_{1}, \ldots, x_{m}\right\} \cap\left\{y_{1}, \ldots, y_{n}\right\}=\emptyset
$$

and that no x_{i} occurs free in ψ_{2}. Next replace $Q_{m+1} y_{1} \ldots Q_{m+n} y_{n} \psi_{2}$ by a variant to arrange that in addition no y_{j} occurs free in ψ_{1}. Applying $m+n$ times prenex transformation of types (3) and (4) we obtain

$$
\begin{array}{r}
\left(Q_{1} x_{1} \ldots Q_{m} x_{m} \psi_{1}\right) \vee\left(Q_{m+1} y_{1} \ldots Q_{m+n} y_{n} \psi_{2}\right) \Longrightarrow \mathrm{pr} \\
Q_{1} x_{1} \ldots Q_{m} x_{m} Q_{m+1} y_{1} \ldots Q_{m+n} y_{n}\left(\psi_{1} \vee \psi_{2}\right) .
\end{array}
$$

Hence $\varphi \Longrightarrow_{\text {pr }} Q_{1} x_{1} \ldots Q_{m} x_{m} Q_{m+1} y_{1} \ldots Q_{m+n} y_{n}\left(\psi_{1} \vee \psi_{2}\right)$. Likewise, to deal with $\varphi_{1} \wedge \varphi_{2}$, we apply prenex transformations of types (5) and (6).

Next, let $\varphi:=\exists x \varphi_{1}$. Applying prenex transformations of type (1) we can assume x_{1}, \ldots, x_{m} differ from x. Then $\varphi \Longrightarrow{ }_{\mathrm{pr}} \exists x Q_{1} x_{1} \ldots Q_{m} x_{m} \psi_{1}$, and $\exists x Q_{1} x_{1} \ldots Q_{m} x_{m} \psi_{1}$ is in prenex form. The case $\varphi:=\forall x \varphi_{1}$ is similar.

We finish this section with results on equalities. Note that by Corollary 2.1.7, the result of replacing an occurrence of an L-term τ in t by an L-term τ^{\prime} is an L-term t^{\prime}.

Proposition 3.3.6. Let τ and τ^{\prime} be L-terms such that $\Sigma \vdash \tau=\tau^{\prime}$, let t^{\prime} be the result of replacing an occurrence of τ in t by τ^{\prime}. Then $\Sigma \vdash t=t^{\prime}$.

Proof. We proceed by induction on terms. First note that if $t=\tau$, then $t^{\prime}=\tau^{\prime}$. This fact takes care of the case that t is a variable. Suppose $t=F t_{1} \ldots t_{n}$ where $F \in L^{f}$ is n-ary and t_{1}, \ldots, t_{n} are L-terms, and assume $t \neq \tau$. Using the facts on admissible words at the end of Section 2.1, including exercise 5, we see
that $t^{\prime}=F t_{1}^{\prime} \ldots t_{n}^{\prime}$ where for some $i \in\{1, \ldots, n\}$ we have $t_{j}=t_{j}^{\prime}$ for all $j \neq i$, $j \in\{1, \ldots, n\}$, and t_{i}^{\prime} is obtained from t_{i} by replacing an occurrence of τ in t_{i} by τ^{\prime}. Inductively we can assume that $\Sigma \vdash t_{1}=t_{1}^{\prime}, \ldots, \Sigma \vdash t_{n}=t_{n}^{\prime}$, so by part (5) of Lemma 3.2.3 we have $\Sigma \vdash t=t^{\prime}$.

An occurrence of an L-term τ in φ is said to be proper if it is not an occurrence immediately following a quantifier symbol. So if τ is not a variable, then any occurrence of τ in any formula is proper. If τ is the variable x, then the second symbol in $\exists x \varphi$ is not a proper occurrence of τ in $\exists x \varphi$.

Proposition 3.3.7 (Equality Theorem). Let τ and τ^{\prime} be L-terms such that $\Sigma \vdash \tau=\tau^{\prime}$. Let φ^{\prime} be the result of replacing a proper occurrence of τ in φ by τ^{\prime}. Then φ^{\prime} is an L-formula and $\Sigma \vdash \varphi \leftrightarrow \varphi^{\prime}$.

Proof. For atomic φ, argue as in the proof of Proposition 3.3.6. Next, proceed by induction on formulas, using the Equivalence Theorem.

Exercises. For exercise (3) below, recall from Section 2.5 the notions of existential formula and universal formula. The result of exercise (4) is used in later chapters.
(1) Let P be a unary relation symbol, Q be a binary relation symbol, and x, y distinct variables. Use prenex transformations to put

$$
\forall x \exists y(P(x) \wedge Q(x, y)) \rightarrow \exists x \forall y(Q(x, y) \rightarrow P(y))
$$

into prenex form.
(2) Let $\left(\varphi_{i}\right)_{i \in I}$ be a family of formulas with finite index set I. Then

$$
\vdash\left(\exists x \bigvee_{i} \varphi_{i}\right) \longleftrightarrow\left(\bigvee_{i} \exists x \varphi_{i}\right), \quad \vdash\left(\forall x \bigwedge_{i} \varphi_{i}\right) \longleftrightarrow\left(\bigwedge_{i} \forall x \varphi_{i}\right)
$$

(3) If $\varphi_{1}\left(x_{1}, \ldots, x_{m}\right)$ and $\varphi_{2}\left(x_{1}, \ldots, x_{m}\right)$ are existential formulas, then

$$
\left(\varphi_{1} \vee \varphi_{2}\right)\left(x_{1}, \ldots, x_{m}\right), \quad\left(\varphi_{1} \wedge \varphi_{2}\right)\left(x_{1}, \ldots, x_{m}\right)
$$

are equivalent to existential formulas $\varphi_{12}^{\vee}\left(x_{1}, \ldots, x_{m}\right)$ and $\varphi_{12}\left(x_{1}, \ldots, x_{m}\right)$. The same holds with "existential" replaced by "universal".
(4) A formula is said to be unnested if each atomic subformula has the form $R x_{1} \ldots x_{m}$ with m-ary $R \in L^{\mathrm{r}} \cup\{\top, \perp,=\}$ and distinct variables x_{1}, \ldots, x_{m}, or the form $F x_{1} \ldots x_{n}=x_{n+1}$ with n-ary $F \in L^{\mathrm{f}}$ and distinct variables x_{1}, \ldots, x_{n+1}. (This allows \top and \perp as atomic subformulas of unnested formulas.) Then:
(i) for each term $t\left(x_{1}, \ldots, x_{m}\right)$ and variable $y \notin\left\{x_{1}, \ldots, x_{m}\right\}$ the formula

$$
t\left(x_{1}, \ldots, x_{m}\right)=y
$$

is equivalent to an unnested existential formula $\theta_{1}\left(x_{1}, \ldots, x_{m}, y\right)$, and also to an unnested universal formula $\theta_{2}\left(x_{1}, \ldots, x_{m}, y\right)$.
(ii) each atomic formula $\varphi\left(y_{1}, \ldots, y_{n}\right)$ is equivalent to an unnested existential formula $\varphi_{1}\left(y_{1}, \ldots, y_{n}\right)$, and also to an unnested universal formula $\varphi_{2}\left(y_{1}, \ldots, y_{n}\right)$.
(iii) each formula $\varphi\left(y_{1}, \ldots, y_{n}\right)$ is equivalent to an unnested formula $\varphi^{u}\left(y_{1}, \ldots, y_{n}\right)$.

3.4 Equational Classes and Universal Algebra

The term-structure \mathcal{A}_{Σ} introduced in the proof of the Completeness Theorem also plays a role in what is called universal algebra. This is a general setting for constructing mathematical objects by generators and relations. Free groups, tensor products of various kinds, polynomial rings, and so on, are all special cases of a single construction in universal algebra.

In this section we fix a language L that has only function symbols, including at least one constant symbol. So L has no relation symbols. Instead of " L structure" we say " L-algebra", and \mathcal{A}, \mathcal{B} denote L-algebras. A substructure of \mathcal{A} is also called a subalgebra of \mathcal{A}, and a quotient algebra of \mathcal{A} is an L-algebra \mathcal{A} / \sim where \sim is a congruence on \mathcal{A}. We call \mathcal{A} trivial if $|A|=1$. There is up to isomorphism exactly one trivial L-algebra.
An L-identity is an L-sentence

$$
\forall \vec{x}\left(s_{1}(\vec{x})=t_{1}(\vec{x}) \wedge \cdots \wedge s_{n}(\vec{x})=t_{n}(\vec{x})\right), \quad \vec{x}=\left(x_{1}, \ldots, x_{m}\right)
$$

where x_{1}, \ldots, x_{m} are distinct variables and $\forall \vec{x}$ abbreviates $\forall x_{1} \ldots \forall x_{m}$, and where $s_{1}, t_{1}, \ldots, s_{n}, t_{n}$ are L-terms.

Given a set Σ of L-identities we define a Σ-algebra to be an L-algebra that satisfies all identities in Σ, in other words, a Σ-algebra is the same as a model of Σ. To such a Σ we associate the class $\operatorname{Mod}(\Sigma)$ of all Σ-algebras. A class \mathcal{C} of L-algebras is said to be equational if there is a set Σ of L-identities such that $\mathcal{C}=\operatorname{Mod}(\Sigma)$.

Examples. With $L=L_{\mathrm{Gr}}$, Gr is a set of L-identities, and $\operatorname{Mod}(\mathrm{Gr})$, the class of groups, is the corresponding equational class of L-algebras. With $L=$ $L_{\text {Ring }}$, Ring is a set of L-identities, and Mod(Ring), the class of rings, is the corresponding equational class of L-algebras. If one adds to Ring the identity $\forall x \forall y(x y=y x)$ expressing the commutative law, then the corresponding class is the class of commutative rings.

Theorem 3.4.1. (G.Birkhoff) Let \mathcal{C} be a class of L-algebras. Then the class \mathcal{C} is equational if and only if the following conditions are satisfied:
(1) closure under isomorphism: if $\mathcal{A} \in \mathcal{C}$ and $\mathcal{A} \cong \mathcal{B}$, then $\mathcal{B} \in \mathcal{C}$.
(2) the trivial L-algebra belongs to \mathcal{C};
(3) every subalgebra of any algebra in \mathcal{C} belongs to \mathcal{C};
(4) every quotient algebra of any algebra in \mathcal{C} belongs to \mathcal{C};
(5) the product of any family $\left(\mathcal{A}_{i}\right)$ of algebras in \mathcal{C} belongs to \mathcal{C}.

It is easy to see that if \mathcal{C} is equational, then conditions (1)-(5) are satisfied. For (3) and (4) one can also appeal to the Exercises 8 and 10 of section 2.5. Towards a proof of the converse, we need some universal-algebraic considerations that are of interest beyond the connection to Birkhoff's theorem.

For the rest of this section we fix a set Σ of L-identities. Associated to Σ is the term algebra \mathcal{A}_{Σ} whose elements are the equivalence classes $[t]$ of variable-free L-terms t, where two such terms s and t are equivalent iff $\Sigma \vdash s=t$.

Lemma 3.4.2. \mathcal{A}_{Σ} is a Σ-algebra.
Proof. Consider an identity

$$
\forall \vec{x}\left(s_{1}(\vec{x})=t_{1}(\vec{x}) \wedge \cdots \wedge s_{n}(\vec{x})=t_{n}(\vec{x})\right), \quad \vec{x}=\left(x_{1}, \ldots, x_{m}\right)
$$

in Σ, let $j \in\{1, \ldots, n\}$ and put $s=s_{j}$ and $t=t_{j}$. Let $a_{1}, \ldots, a_{m} \in A_{\Sigma}$ and put $\mathcal{A}=\mathcal{A}_{\Sigma}$. It suffices to show that then $s\left(\underline{a}_{1}, \ldots, \underline{a}_{m}\right)^{\mathcal{A}}=t\left(\underline{a}_{1}, \ldots, \underline{a}_{m}\right)^{\mathcal{A}}$. Take variable-free L-terms $\alpha_{1}, \ldots, \alpha_{m}$ such that $a_{1}=\left[\alpha_{1}\right], \ldots, a_{m}=\left[\alpha_{m}\right]$. Then by part (1) of Corollary 3.2 .5 we have $a_{1}=\alpha_{1}^{\mathcal{A}}, \ldots, a_{m}=\alpha_{m}^{\mathcal{A}}$, so

$$
s\left(\underline{a}_{1}, \ldots, \underline{a}_{m}\right)^{\mathcal{A}}=s\left(\alpha_{1}, \ldots, \alpha_{m}\right)^{\mathcal{A}}, \quad t\left(\underline{a}_{1}, \ldots, \underline{a}_{m}\right)^{\mathcal{A}}=t\left(\alpha_{1}, \ldots, \alpha_{m}\right)^{\mathcal{A}}
$$

by Lemma 2.6.1. Also, by part (1) of Corollary 3.2.5,

$$
s\left(\alpha_{1}, \ldots, \alpha_{m}\right)^{\mathcal{A}}=\left[s\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right], \quad t\left(\alpha_{1}, \ldots, \alpha_{m}\right)^{\mathcal{A}}=\left[t\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right]
$$

Now $\Sigma \vdash s\left(\alpha_{1}, \ldots, \alpha_{m}\right)=t\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, so $\left[s\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right]=\left[t\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right]$, and thus $s\left(\underline{a}_{1}, \ldots, \underline{a}_{m}\right)^{\mathcal{A}}=t\left(\underline{a}_{1}, \ldots, \underline{a}_{m}\right)^{\mathcal{A}}$, as desired.

Actually, we are going to show that \mathcal{A}_{Σ} is a so-called initial Σ-algebra.
An initial Σ-algebra is a Σ-algebra \mathcal{A} such that for any Σ-algebra \mathcal{B} there is a unique homomorphism $\mathcal{A} \rightarrow \mathcal{B}$.

For example, the trivial group is an initial Gr-algebra, and the ring of integers is an initial Ring-algebra.

Suppose \mathcal{A} and \mathcal{B} are both initial Σ-algebras. Then there is a unique isomorphism $\mathcal{A} \rightarrow \mathcal{B}$. To see this, let i and j be the unique homomorphisms $\mathcal{A} \rightarrow \mathcal{B}$ and $\mathcal{B} \rightarrow \mathcal{A}$, respectively. Then we have homomorphisms $j \circ i: \mathcal{A} \rightarrow \mathcal{A}$ and $i \circ j: \mathcal{B} \rightarrow \mathcal{B}$, respectively, so necessarily $j \circ i=\operatorname{id}_{A}$ and $i \circ j=\operatorname{id}_{B}$, so i and j are isomorphisms. So if there is an initial Σ-algebra, it is unique up-to-unique-isomorphism.

Lemma 3.4.3. \mathcal{A}_{Σ} is an initial Σ-algebra.
Proof. Let \mathcal{B} be any Σ-algebra. Note that if $s, t \in \operatorname{Term}_{L}$ and $[s]=[t]$, then $\Sigma \vdash s=t$, so $s^{\mathcal{B}}=t^{\mathcal{B}}$. Thus we have a map

$$
A_{\Sigma} \rightarrow B, \quad[t] \mapsto t^{\mathcal{B}}
$$

It is easy to check that this map is a homomorphism $\mathcal{A}_{\Sigma} \rightarrow \mathcal{B}$. By Exercise 4 in Section 2.4 it is the only such homomorphism.

Free algebras. Let I be an index set in what follows. Let \mathcal{A} be a Σ-algebra and $\left(a_{i}\right)_{i \in I}$ an I-indexed family of elements of A. Then \mathcal{A} is said to be a free
Σ-algebra on $\left(a_{i}\right)$ if for every Σ-algebra \mathcal{B} and I-indexed family $\left(b_{i}\right)$ of elements of B there is exactly one homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$ such that $h\left(a_{i}\right)=b_{i}$ for all $i \in I$. We also express this by " $\left(\mathcal{A},\left(a_{i}\right)\right)$ is a free Σ-algebra". Finally, \mathcal{A} itself is sometimes referred to as a free Σ-algebra if there is a family $\left(a_{j}\right)_{j \in J}$ in A such that $\left(\mathcal{A},\left(a_{j}\right)\right)$ is a free Σ-algebra.
As an example, take $L=L_{\text {Ring }}$ and $\mathrm{cRi}:=\operatorname{Ring} \cup\{\forall x \forall y x y=y z\}$, where x, y are distinct variables. So the cRi-algebras are just the commutative rings. Let $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be the ring of polynomials in distinct indeterminates X_{1}, \ldots, X_{n} over \mathbb{Z}. For any commutative ring R and elements $b_{1}, \ldots, b_{n} \in R$ we have a unique ring homomorphism $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right] \rightarrow R$ that sends X_{i} to b_{i} for $i=$ $1, \ldots, n$, namely the evaluation map (or substitution map)

$$
\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right] \rightarrow R, \quad f\left(X_{1}, \ldots, X_{n}\right) \mapsto f\left(b_{1}, \ldots, b_{n}\right)
$$

Thus $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ is a free commutative ring on $\left(X_{i}\right)_{1 \leq i \leq n}$.
For a simpler example, let $L=L_{\mathrm{Mo}}:=\{1, \cdot\} \subseteq L_{\mathrm{Gr}}$ be the language of monoids, and consider

$$
\text { Mo }:=\{\forall x(1 \cdot x=x \wedge x \cdot 1=x), \forall x \forall y \forall z((x y) z=x(y z))\}
$$

where x, y, z are distinct variables. A monoid, or semigroup with identity, is a model $\mathcal{A}=(A ; 1, \cdot)$ of Mo, and we call $1 \in A$ the identity of the monoid \mathcal{A}, and - its product operation.

Let E^{*} be the set of words on an alphabet E, and consider E^{*} as a monoid by taking the empty word as its identity and the concatenation operation $(v, w) \mapsto$ $v w$ as its product operation. Then E^{*} is a free monoid on the family $(e)_{e \in E}$ of words of length 1 , because for any monoid \mathcal{B} and elements $b_{e} \in B$ (for $e \in E$) we have a unique monoid homomorphism $E^{*} \rightarrow \mathcal{B}$ that sends each $e \in E$ to b_{e}, namely,

$$
e_{1} \ldots e_{n} \mapsto b_{e_{1}} \cdots b_{e_{n}}
$$

Remark. If \mathcal{A} and \mathcal{B} are both free Σ-algebras on $\left(a_{i}\right)$ and $\left(b_{i}\right)$ respectively, with same index set I, and $g: \mathcal{A} \rightarrow \mathcal{B}$ and $h: \mathcal{B} \rightarrow \mathcal{A}$ are the unique homomorphisms such that $g\left(a_{i}\right)=b_{i}$ and $h\left(b_{i}\right)=a_{i}$ for all i, then $(h \circ g)\left(a_{i}\right)=a_{i}$ for all i, so $h \circ g=\operatorname{id}_{A}$, and likewise $g \circ h=\mathrm{id}_{B}$, so g is an isomorphism with inverse h. Thus, given I, there is, up to unique isomorphism preserving I-indexed families, at most one free Σ-algebra on an I-indexed family of its elements.

We shall now construct free Σ-algebras as initial algebras by working in an extended language. Let $L_{I}:=L \cup\left\{c_{i}: i \in I\right\}$ be the language L augmented by new constant symbols c_{i} for $i \in I$, where new means that $c_{i} \notin L$ for $i \in I$ and $c_{i} \neq c_{j}$ for distinct $i, j \in I$. So an L_{I}-algebra $\left(\mathcal{B},\left(b_{i}\right)\right)$ is just an L-algebra \mathcal{B} equipped with an I-indexed family $\left(b_{i}\right)$ of elements of B. Let Σ_{I} be Σ viewed as a set of L_{I}-identities. Then a free Σ-algebra on an I-indexed family of its elements is just an initial Σ_{I}-algebra. In particular, the Σ_{I}-algebra $\mathcal{A}_{\Sigma_{I}}$ is a
free Σ-algebra on $\left(\left[c_{i}\right]\right)$. Thus, up to unique isomorphism of Σ_{I}-algebras, there is a unique free Σ-algebra on an I-indexed family of its elements.

Let $\left(\mathcal{A},\left(a_{i}\right)_{i \in I}\right)$ be a free Σ-algebra. Then \mathcal{A} is generated by $\left(a_{i}\right)$. To see why, let \mathcal{B} be the subalgebra of \mathcal{A} generated by $\left(a_{i}\right)$. Then we have a unique homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$ such that $h\left(a_{i}\right)=a_{i}$ for all $i \in I$, and then the composition

$$
\mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{A}
$$

is necessarily $\mathrm{id}_{\mathcal{A}}$, so $\mathcal{B}=\mathcal{A}$.
Let \mathcal{B} be any Σ-algebra, and take any family $\left(b_{j}\right)_{j \in J}$ in B that generates \mathcal{B}. Take a free Σ-algebra $\left(\mathcal{A},\left(a_{j}\right)_{j \in J}\right)$, and take the unique homomorphism h : $\left(\mathcal{A},\left(a_{j}\right)\right) \rightarrow\left(\mathcal{B},\left(b_{j}\right)\right)$. Then $h\left(t^{\mathcal{A}}\left(a_{j_{1}}, \ldots, a_{j_{n}}\right)\right)=t^{\mathcal{B}}\left(b_{j_{1}}, \ldots, b_{j_{n}}\right)$ for all L terms $t\left(x_{1}, \ldots, x_{n}\right)$ and $j_{1}, \ldots, j_{n} \in J$, so $h(A)=B$, and thus h induces an isomorphism $\mathcal{A} / \sim_{h} \cong \mathcal{B}$. We have shown:

Every Σ-algebra is isomorphic to a quotient of a free Σ-algebra.
This fact can sometimes be used to reduce problems on Σ-algebras to the case of free Σ-algebras; see the next subsection for an example.

Proof of Birkhoff's theorem. Let us say that a class \mathcal{C} of L-algebras is closed if it has properties (1)-(5) listed in Theorem 3.4.1. Assume \mathcal{C} is closed; we have to show that then \mathcal{C} is equational. Indeed, let $\Sigma(\mathcal{C})$ be the set of L-identities

$$
\forall \vec{x}(s(\vec{x})=t(\vec{x}))
$$

that are true in all algebras of \mathcal{C}. It is clear that each algebra in \mathcal{C} is a $\Sigma(\mathcal{C})$ algebra, and it remains to show that every $\Sigma(\mathcal{C})$-algebra belongs to \mathcal{C}. Here is the key fact from which this will follow:
Claim. If \mathcal{A} is an initial $\Sigma(\mathcal{C})$-algebra, then $\mathcal{A} \in \mathcal{C}$.
To prove this claim we take $\mathcal{A}:=\mathcal{A}_{\Sigma(\mathcal{C})}$. For $s, t \in \operatorname{Term}_{L}$ such that $s=t$ does not belong to $\Sigma(\mathcal{C})$ we pick $\mathcal{B}_{s, t} \in \mathcal{C}$ such that $\mathcal{B}_{s, t} \vDash s \neq t$, and we let $h_{s, t}: \mathcal{A} \rightarrow \mathcal{B}_{s, t}$ be the unique homomorphism, so $h_{s, t}([s]) \neq h_{s, t}([t])$. Let $\mathcal{B}:=\prod \mathcal{B}_{s, t}$ where the product is over all pairs (s, t) as above, and let $h: \mathcal{A} \rightarrow \mathcal{B}$ be the homomorphism given by $h(a)=\left(h_{s, t}(a)\right)$. Note that $\mathcal{B} \in \mathcal{C}$. Then h is injective. To see why, let $s, t \in \operatorname{Term}_{L}$ be such that $[s] \neq[t]$ in $A=A_{\Sigma(\mathcal{C})}$. Then $s=t$ does not belong to $\Sigma(\mathcal{C})$, so $h_{s, t}([s]) \neq h_{s, t}([t])$, and thus $h([s]) \neq h([t])$. This injectivity gives $\mathcal{A} \cong h(\mathcal{A}) \subseteq \mathcal{B}$, so $\mathcal{A} \in \mathcal{C}$. This finishes the proof of the claim.
Now, every $\Sigma(\mathcal{C})$-algebra is isomorphic to a quotient of a free $\Sigma(\mathcal{C})$-algebra, so it remains to show that free $\Sigma(\mathcal{C})$-algebras belong to \mathcal{C}. Let \mathcal{A} be a free $\Sigma(\mathcal{C})$ algebra on $\left(a_{i}\right)_{i \in I}$. Let \mathcal{C}_{I} be the class of all L_{I}-algebras $\left(\mathcal{B},\left(b_{i}\right)\right)$ with $\mathcal{B} \in \mathcal{C}$. It is clear that \mathcal{C}_{I} is closed as a class of L_{I}-algebras. Now, $\left(\mathcal{A},\left(a_{i}\right)\right)$ is easily seen to be an initial $\Sigma\left(\mathcal{C}_{I}\right)$-algebra. By the claim above, applied to \mathcal{C}_{I} in place of \mathcal{C}, we obtain $\left(\mathcal{A},\left(a_{i}\right)\right) \in \mathcal{C}_{I}$, and thus $\mathcal{A} \in \mathcal{C}$.

Generators and relations. Let G be any set. Then we have a Σ-algebra \mathcal{A} with a map $\iota: G \rightarrow A$ such that for any Σ-algebra \mathcal{B} and any map $j: G \rightarrow B$ there is a unique homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$ such that $h \circ \iota=j$; in other words, \mathcal{A} is a free as a Σ-algebra on $(\iota g)_{g \in G}$. Note that if $\left(\mathcal{A}^{\prime}, \iota^{\prime}\right)$ (with $\left.\iota^{\prime}: G \rightarrow A^{\prime}\right)$ has the same universal property as (\mathcal{A}, ι), then the unique homomorphism $h: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ such that $h \circ \iota=\iota^{\prime}$ is an isomorphism, so this universal property determines the pair (\mathcal{A}, ι) up-to-unique-isomorphism. So there is no harm in calling (\mathcal{A}, ι) the free Σ-algebra on G. Note that \mathcal{A} is generated as an L-algebra by ιG.

Here is a particular way of constructing the free Σ-algebra on G. Take the language $L_{G}:=L \cup G$ (disjoint union) with the elements of G as constant symbols. Let $\Sigma(G)$ be Σ considered as a set of L_{G}-identities. Then $\mathcal{A}:=\mathcal{A}_{\Sigma(G)}$ as a Σ-algebra with the map $g \mapsto[g]: G \rightarrow A_{\Sigma(G)}$ is the free Σ-algebra on G.

Next, let R be a set of sentences $s(\vec{g})=t(\vec{g})$ where $s\left(x_{1}, \ldots, x_{n}\right)$ and $t\left(x_{1}, \ldots, x_{n}\right)$ are L-terms and $\vec{g}=\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ (with n depending on the sentence). We wish to construct the Σ-algebra generated by G with R as set of relations. ${ }^{1}$ This object is described up-to-isomorphism in the next lemma.

Lemma 3.4.4. There is a Σ-algebra $\mathcal{A}(G, R)$ with a map $i: G \rightarrow A(G, R)$ such that:
(1) $\mathcal{A}(G, R) \models s(i \vec{g})=t(i \vec{g})$ for all $s(\vec{g})=t(\vec{g})$ in R;
(2) for any Σ-algebra \mathcal{B} and map $j: G \rightarrow B$ with $\mathcal{B} \models s(j \vec{g})=t(j \vec{g})$ for all $s(\vec{g})=t(\vec{g})$ in R, there is a unique homomorphism $h: \mathcal{A}(G, R) \rightarrow \mathcal{B}$ such that $h \circ i=j$.

Proof. Let $\Sigma(R):=\Sigma \cup R$, viewed as a set of L_{G}-sentences, let $\mathcal{A}(G, R):=$ $\mathcal{A}_{\Sigma(R)}$, and define $i: G \rightarrow A(G, R)$ by $i(g)=[g]$. As before one sees that the universal property of the lemma is satisfied.

[^7]
Chapter 4

Some Model Theory

In this chapter we first derive the Löwenheim-Skolem Theorem. Next we develop some basic methods related to proving completeness of a given set of axioms: Vaught's Test, back-and-forth, quantifier elimination. Each of these methods, when succesful, achieves a lot more than just establishing completeness.

4.1 Löwenheim-Skolem; Vaught's Test

Below, the cardinality of a structure is defined to be the cardinality of its underlying set. In this section we have the same conventions concerning L, \mathcal{A}, t, $\varphi, \psi, \theta, \sigma$ and Σ as in the beginning of Section 2.6, unless specified otherwise.

Theorem 4.1.1 (Countable Löwenheim-Skolem Theorem).
Suppose L is countable and Σ has a model. Then Σ has a countable model.
Proof. Since Var is countable, the hypothesis that L is countable yields that the set of L-sentences is countable. Hence the language

$$
L \cup\left\{c_{\sigma}: \Sigma \vdash \sigma \text { where } \sigma \text { is an } L \text {-sentence of the form } \exists x \varphi(x)\right\}
$$

is countable, that is, adding witnesses keeps the language countable. The union of countably many countable sets is countable, hence the set L_{∞} constructed in the proof of the Completeness Theorem is countable. It follows that there are only countably many variable-free L_{∞}-terms, hence $\mathcal{A}_{\Sigma_{\infty}}$ is countable, and thus its reduct $\left.\mathcal{A}_{\Sigma_{\infty}}\right|_{L}$ is a countable model of Σ.

Remark. The above proof is the first time that we used the countability of the set Var $=\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right\}$ of variables. As promised in Section 2.4, we shall now indicate why the Countable Löwenheim-Skolem Theorem goes through without assuming that Var is countable.

Suppose that Var is uncountable. Take a countably infinite subset $\operatorname{Var}^{\prime} \subseteq$ Var. Then each sentence is equivalent to one whose variables are all from Var ${ }^{\prime}$. By replacing each sentence in Σ by an equivalent one all whose variables are
from $\operatorname{Var}^{\prime}$, we obtain a countable set Σ^{\prime} of sentences such that Σ and Σ^{\prime} have the same models. As in the proof above, we obtain a countable model of Σ^{\prime} working throughout in the setting where only variables from Var $^{\prime}$ are used in terms and formulas. This model is a countable model of Σ.

The following test can be useful in showing that a set of axioms Σ is complete.
Proposition 4.1.2 (Vaught's Test). Let L be countable, and suppose Σ has a model, and that all countable models of Σ are isomorphic. Then Σ is complete.

Proof. Suppose Σ is not complete. Then there is σ such that $\Sigma \nvdash \sigma$ and $\Sigma \nvdash \neg \sigma$. Hence by the Löwenheim-Skolem Theorem there is a countable model \mathcal{A} of Σ such that $\mathcal{A} \not \models \sigma$, and there is a countable model \mathcal{B} of Σ such that $\mathcal{B} \not \models \neg \sigma$. We have $\mathcal{A} \cong \mathcal{B}, \mathcal{A} \models \neg \sigma$ and $\mathcal{B} \models \sigma$, contradiction.

Example. Let $L=\emptyset$, so the L-structures are just the non-empty sets. Let $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \ldots\right\}$ where

$$
\sigma_{n}=\exists x_{1} \ldots x_{n} \bigwedge_{1 \leq i<j \leq n} x_{i} \neq x_{j}
$$

The models of Σ are exactly the infinite sets. All countable models of Σ are countably infinite and hence isomorphic to \mathbf{N}. Thus by Vaught's Test Σ is complete.

In this example the hypothesis of Vaught's Test is trivially satisfied. In other cases it may require work to check this hypothesis. One general method in model theory, Back-and-Forth, is often used to verify the hypothesis of Vaught's Test. The next theorem is due to Cantor, but the proof we give stems from Hausdorff and shows Back-and-Forth in action. To formulate that theorem we recall from Section 2.6 that a totally ordered set is a structure $(A ;<)$ for the language L_{O} that satisfies the following axioms (where x, y, z are distinct variables):

$$
\forall x(x \nless x), \quad \forall x y z((x<y \wedge y<z) \rightarrow x<z), \quad \forall x y(x<y \vee x=y \vee y<x) .
$$

A totally ordered set is said to be dense if it satisfies in addition the axiom

$$
\forall x y(x<y \rightarrow \exists z(x<z<y))
$$

and it is said to have no endpoints if it satisfies the axiom

$$
\forall x \exists y z(y<x<z)
$$

So $(\mathbf{Q} ;<)$ and $(\mathbf{R} ;<)$ are dense totally ordered sets without endpoints.
Theorem 4.1.3 (Cantor). Any two countable dense totally ordered sets without endpoints are isomorphic.

Proof. Let $(A ;<)$ and $(B ;<)$ be countable dense totally ordered sets without endpoints. So $A=\left\{a_{n}: n \in \mathbf{N}\right\}$ and $B=\left\{b_{n}: n \in \mathbf{N}\right\}$. We define by recursion a sequence (α_{n}) in A and a sequence $\left(\beta_{n}\right)$ in B : Put $\alpha_{0}:=a_{0}$ and $\beta_{0}:=b_{0}$. Let $n>0$, and suppose we have distinct $\alpha_{0}, \ldots, \alpha_{n-1}$ in A and distinct $\beta_{0}, \ldots, \beta_{n-1}$ in B such that for all $i, j<n$ we have $\alpha_{i}<\alpha_{j} \Longleftrightarrow \beta_{i}<\beta_{j}$. Then we define $\alpha_{n} \in A$ and $\beta_{n} \in B$ as follows:
Case 1: n is even. (Here we go forth.) First take $k \in \mathbf{N}$ minimal such that $a_{k} \notin\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\} ;$ then take $l \in \mathbf{N}$ minimal such that b_{l} is situated with respect to $\beta_{0}, \ldots, \beta_{n-1}$ as a_{k} is situated with respect to $\alpha_{0}, \ldots, \alpha_{n-1}$, that is, l is minimal such that for $i=0, \ldots, n-1$ we have: $\alpha_{i}<a_{k} \Longleftrightarrow \beta_{i}<b_{l}$, and $\alpha_{i}>a_{k} \Longleftrightarrow \beta_{i}>b_{l}$. (The reader should check that such an l exists: that is where density and "no endpoints" come in); put $\alpha_{n}:=a_{k}$ and $\beta_{n}:=b_{l}$.
Case 2: n is odd. (Here we go back.) First take $l \in \mathbf{N}$ minimal such that $b_{l} \notin\left\{\beta_{0}, \ldots, \beta_{n-1}\right\} ;$ next take $k \in \mathbf{N}$ minimal such that a_{k} is situated with respect to $\alpha_{0}, \ldots, \alpha_{n-1}$ as b_{l} is situated with respect to $\beta_{0}, \ldots, \beta_{n-1}$, that is, k is minimal such that for $i=0, \ldots, n-1$ we have: $\alpha_{i}<a_{k} \Longleftrightarrow \beta_{i}<b_{l}$, and $\alpha_{i}>a_{k} \Longleftrightarrow \beta_{i}>b_{l}$. Put $\beta_{n}:=b_{l}$ and $\alpha_{n}:=a_{k}$.

One proves easily by induction on n that then $a_{n} \in\left\{\alpha_{0}, \ldots, \alpha_{2 n}\right\}$ and $b_{n} \in$ $\left\{\beta_{0}, \ldots, \beta_{2 n}\right\}$. Thus we have a bijection $\alpha_{n} \mapsto \beta_{n}: A \rightarrow B$, and this bijection is an isomorphism $(A ;<) \rightarrow(B ;<)$.

Let Σ be the set of axioms for dense totally ordered sets without endpoints as indicated before the statement of Cantor's theorem. Thus Σ is a set of sentences in the language L_{O}. By Vaught's Test we obtain from Cantor's theorem:

Corollary 4.1.4. Σ is complete.
In the results below κ is an infinite cardinal, construed as the set of all ordinals $\lambda<\kappa$ (as is usual in set theory). We have the following generalization of the Löwenheim-Skolem theorem.

Theorem 4.1.5 (Generalized Löwenheim-Skolem Theorem). Suppose $|L| \leq \kappa$ and Σ has an infinite model. Then Σ has a model of cardinality κ.
Proof. Let $\left\{c_{\lambda}\right\}_{\lambda<\kappa}$ be a family of κ new constant symbols that are not in L and are pairwise distinct (that is, $c_{\lambda} \neq c_{\mu}$ for $\lambda<\mu<\kappa$). Let $L^{\prime}=L \cup\left\{c_{\lambda}: \lambda<\kappa\right\}$ and let $\Sigma^{\prime}=\Sigma \cup\left\{c_{\lambda} \neq c_{\mu}: \lambda<\mu<\kappa\right\}$. We claim that Σ^{\prime} has a model. To see this it suffices to show that, given any finite set $\Lambda \subseteq \kappa$, the set of L^{\prime}-sentences

$$
\Sigma_{\Lambda}:=\Sigma \cup\left\{c_{\lambda} \neq c_{\mu}: \lambda, \mu \in \Lambda, \lambda \neq \mu\right\}
$$

has a model. Take an infinite model \mathcal{A} of Σ. We make an L^{\prime}-expansion \mathcal{A}_{Λ} of \mathcal{A} by interpreting distinct c_{λ} 's with $\lambda \in \Lambda$ by distinct elements of A, and interpreting the c_{λ} 's with $\lambda \notin \Lambda$ arbitrarily. Then \mathcal{A}_{Λ} is a model of Σ_{Λ}.

Note that L^{\prime} also has size at most κ. The same arguments we used in proving the countable version of the Löwenheim-Skolem Theorem show that then Σ^{\prime} has a model $\mathcal{B}^{\prime}=\left(\mathcal{B},\left(b_{\lambda}\right)_{\lambda<\kappa}\right)$ of cardinality at most κ. We have $b_{\lambda} \neq b_{\mu}$ for $\lambda<\mu<\kappa$, hence \mathcal{B} is a model of Σ of cardinality κ.

The next proposition is Vaught's Test for arbitrary languages and cardinalities.
Proposition 4.1.6. Suppose L has size at most κ, Σ has a model and all models of Σ are infinite. Suppose also that any two models of Σ of cardinality κ are isomorphic. Then Σ is complete.

Proof. Let σ be an L-sentence and suppose that $\Sigma \nvdash \sigma$ and $\Sigma \nvdash \neg \sigma$. We will derive a contradiction. First $\Sigma \nvdash \sigma$ means that $\Sigma \cup\{\neg \sigma\}$ has a model. Similarly $\Sigma \nvdash \neg \sigma$ means that $\Sigma \cup\{\sigma\}$ has a model. These models must be infinite since they are models of Σ, so by the Generalized Löwenheim-Skolem Theorem $\Sigma \cup\{\neg \sigma\}$ has a model \mathcal{A} of cardinality κ, and $\Sigma \cup\{\sigma\}$ has a model \mathcal{B} of cardinality κ. By assumption $\mathcal{A} \cong \mathcal{B}$, contradicting that $\mathcal{A} \vDash \neg \sigma$ and $\mathcal{B} \models \sigma$.

We now discuss in detail an application of this generalized Vaught Test. Fix a field F. A vector space over F is an abelian (additively written) group V equipped with a scalar multiplication operation

$$
(\lambda, v) \mapsto \lambda v: \quad F \times V \longrightarrow V
$$

such that for all $\lambda, \mu \in F$ and all $v, w \in V$,
(i) $(\lambda+\mu) v=\lambda v+\mu v$,
(ii) $\lambda(v+w)=\lambda v+\lambda w$,
(iii) $1 v=v$,
(iv) $(\lambda \mu) v=\lambda(\mu v)$.

Let L_{F} be the language of vector spaces over F : it extends the language $L_{\mathrm{Ab}}=$ $\{0,-,+\}$ of abelian groups with unary function symbols f_{λ}, one for each $\lambda \in F$; a vector space V over F is viewed as an L_{F}-structure by interpreting each f_{λ} as the function $v \longmapsto \lambda v: V \rightarrow V$. One easily specifies a set Σ_{F} of sentences whose models are exactly the vector spaces over F. Note that Σ_{F} is not complete since the trivial vector space satisfies $\forall x(x=0)$ but F viewed as vector space over F does not. Moreover, if F is finite, then we have also nontrivial finite vector spaces. From a model-theoretic perspective finite structures are somewhat exceptional, so we are going to restrict attention to infinite vector spaces over F. Let x_{1}, x_{2}, \ldots be a sequence of distinct variables and put

$$
\Sigma_{F}^{\infty}:=\Sigma_{F} \cup\left\{\exists x_{1} \ldots \exists x_{n} \bigwedge_{1 \leq i<j \leq n} x_{i} \neq x_{j}: n=2,3, \ldots\right\}
$$

So the models of Σ_{F}^{∞} are exactly the infinite vector spaces over F. Note that if F itself is infinite then each non-trivial vector space over F is infinite.

We will need the following facts about vector spaces V and W over F. (Proofs can be found in many places.)

Fact.

(a) V has a basis B, that is, $B \subseteq V$, and for each vector $v \in V$ there is a unique family $\left(\lambda_{b}\right)_{b \in B}$ of scalars (elements of F) such that $\left\{b \in B: \lambda_{b} \neq 0\right\}$ $i s$ finite and $v=\Sigma_{b \in B} \lambda_{b} b$.
(b) Any two bases B and C of V have the same cardinality.
(c) If V has basis B and W has basis C, then any bijection $B \rightarrow C$ extends uniquely to an isomorphism $V \rightarrow W$.
(d) Let B be a basis of V. Then $|V|=|B| \cdot|F|$ if F or B is infinite. If F and B are finite, then $|V|=|F|^{|B|}$.

Theorem 4.1.7. Σ_{F}^{∞} is complete.
Proof. Take a $\kappa>|F|$. In particular, L_{F} has size at most κ. Let V be a vector space over F of cardinality κ. Then a basis of V must also have size κ by property (d) above. Hence any two vector spaces over F of cardinality κ have bases of cardinality κ and thus are isomorphic by property (c). It follows by the Generalized Vaught Test that Σ_{F}^{∞} is complete.

Remark. Theorem 4.1.7 and Exercise 3 imply for instance that if $F=\mathbf{R}$ then all non-trivial vector spaces over F satisfy exactly the same sentences in L_{F}.

With the generalized Vaught Test we can also prove that $\mathrm{ACF}(0)$ (whose models are the algebraically closed fields of characteristic 0) is complete. The proof is similar, with "transcendence bases" taking over the role of bases. The relevant definitions and facts are as follows.
Let K be a field with subfield \mathbf{k}. A subset B of K is said to be algebraically independent over \mathbf{k} if for all distinct $b_{1}, \ldots, b_{n} \in B$ we have $p\left(b_{1}, \ldots, b_{n}\right) \neq 0$ for all nonzero polynomials $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$, where x_{1}, \ldots, x_{n} are distinct variables. A transcendence basis of K over \mathbf{k} is a set $B \subseteq K$ such that B is algebraically independent over \mathbf{k} and K is algebraic over its subfield $\mathbf{k}(B)$.

Fact.

(a) K has a transcendence basis over \mathbf{k};
(b) any two transcendence bases of K over \mathbf{k} have the same size;
(c) If K is algebraically closed with transcendence basis B over \mathbf{k} and K^{\prime} is also an algebraically closed field extension of \mathbf{k} with transcendence basis B^{\prime} over \mathbf{k}, then any bijection $B \rightarrow B^{\prime}$ extends to an isomorphism $K \rightarrow K^{\prime}$;
(d) if K is uncountable and $|K|>|\mathbf{k}|$, then $|K|=|B|$ for each transcendence basis B of K over \mathbf{k}.

Applying this with $\mathbf{k}=\mathbb{Q}$ and $\mathbf{k}=\mathbb{F}_{p}$ for prime numbers p, we obtain that any two algebraically closed fields of the same characteristic and the same uncountable size are isomorphic. Using Vaught's Test for models of size \aleph_{1} this yields:
Theorem 4.1.8. The set $\mathrm{ACF}(0)$ of axioms for algebraically closed fields of characteristic zero is complete. Likewise, $\operatorname{ACF}(p)$ is complete for each prime number p.

If the hypothesis of Vaught's Test or its generalization is satisfied, then many things follow of which completeness is only one; it goes beyond the scope of these notes to develop this large chapter of pure model theory, which goes under the
name of "categoricity in power", but we cannot resist mentioning two remarkable theorems in this area. First an assumption and a definition.

Assume L is countable, Σ has a model, and all models of Σ are infinite. Given any infinite cardinal κ, we say that Σ is κ-categorical if all models of Σ of cardinality κ are isomorphic.

Mentioning cardinals here may give the wrong impression about the role of set theory in model theory. The key results concerning these categoricity notions actually show their intrinsic and robust logical nature rather than any sensitive dependence on infinite cardinals:

Theorem 4.1.9. For L and Σ as above, the following are equivalent:
(i) Σ is \aleph_{0}-categorical;
(ii) Σ is complete, and for any $n \geq 1$ and distinct variables x_{1}, \ldots, x_{n} there are up to Σ-equivalence only finitely many L-formulas $\varphi\left(x_{1}, \ldots, x_{n}\right)$.
This result dates from the 1950's. The next theorem is due to Morley (1965), and is considered the first theorem in pure model theory of real depth.

Theorem 4.1.10. With L and Σ as above, if Σ is κ-categorical for some uncountable κ, then Σ is κ-categorical for every uncountable κ.

Exercises.

(1) Let $L=\{U\}$ where U is a unary relation symbol. Consider the L-structure $(\mathbf{Z} ; \mathbf{N})$. Give an informative description of a complete set of L-sentences true in $(\mathbf{Z} ; \mathbf{N})$. (A description like $\{\sigma:(\mathbf{Z} ; \mathbf{N}) \models \sigma\}$ is correct but not informative. An explicit, possibly infinite, list of axioms is required. Hint: Make an educated guess and try to verify it using Vaught's Test or one of its variants.)
(2) Let Σ_{1} and Σ_{2} be sets of L-sentences such that no symbol of L occurs in both Σ_{1} and Σ_{2}. Suppose Σ_{1} and Σ_{2} have infinite models. Then $\Sigma_{1} \cup \Sigma_{2}$ has a model.
(3) Let $L=\{S\}$ where S is a unary function symbol. Consider the L-structure ($\mathbf{Z} ; S$) where $S(a)=a+1$ for $a \in \mathbf{Z}$. Give an informative description of a complete set of L-sentences true in $(\mathbf{Z} ; S)$.

4.2 Elementary Equivalence and Back-and-Forth

In the rest of this chapter we relax notation, and just write $\varphi\left(a_{1}, \ldots, a_{n}\right)$ for an L_{A}-sentence $\varphi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right)$, where $\mathcal{A}=(A ; \ldots)$ is an L-structure, $\varphi\left(x_{1}, \ldots, x_{n}\right)$ an L_{A}-formula, and $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$.

In this section \mathcal{A} and \mathcal{B} denote L-structures. We say that \mathcal{A} and \mathcal{B} are elementarily equivalent (notation: $\mathcal{A} \equiv \mathcal{B}$) if they satisfy the same L-sentences. Thus by the previous section $(\mathbf{Q} ;<) \equiv(\mathbf{R} ;<)$, and any two infinite vector spaces over a given field F are elementarily equivalent.

A partial isomorphism from \mathcal{A} to \mathcal{B} is a bijection $\gamma: X \rightarrow Y$ with $X \subseteq A$ and $Y \subseteq B$ (so $X=\operatorname{domain}(\gamma)$ and $Y=\operatorname{codomain}(\gamma))$ such that
(i) for all m-ary $R \in L^{\mathrm{r}}$ and $a_{1}, \ldots, a_{m} \in X$,

$$
R^{\mathcal{A}}\left(a_{1}, \ldots, a_{m}\right) \Longleftrightarrow R^{\mathcal{B}}\left(\gamma a_{1}, \ldots, \gamma a_{m}\right)
$$

(ii) for all n-ary $F \in L^{\mathrm{f}}$ and $a_{1}, \ldots, a_{n}, a_{n+1} \in X$,

$$
F^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)=a_{n+1} \Longleftrightarrow F^{\mathcal{B}}\left(\gamma a_{1}, \ldots, \gamma a_{n}\right)=\gamma\left(a_{n+1}\right)
$$

Examples. An isomorphism $\mathcal{A} \rightarrow \mathcal{B}$ is the same as a partial isomorphism from \mathcal{A} to \mathcal{B} with domain A and codomain B. If $\gamma: X \rightarrow Y$ is a partial isomorphism from \mathcal{A} to \mathcal{B}, then $\gamma^{-1}: Y \rightarrow X$ is a partial isomorphism from \mathcal{B} to \mathcal{A}, and for any $E \subseteq X$ the restriction $\left.\gamma\right|_{E}: E \rightarrow \gamma(E)$ is a partial isomorphism from \mathcal{A} to \mathcal{B}. Suppose $\mathcal{A}=(A ;<)$ and $\mathcal{B}=(B ;<)$ are totally ordered sets, and $N \in \mathbf{N}$ and $a_{1}, \ldots, a_{N} \in A, b_{1}, \ldots, b_{N} \in B$ are such that $a_{1}<a_{2}<\cdots<a_{N}$ and $b_{1}<b_{2}<\cdots<b_{N}$; then the map $a_{i} \mapsto b_{i}:\left\{a_{1}, \ldots, a_{N}\right\} \rightarrow\left\{b_{1}, \ldots, b_{N}\right\}$ is a partial isomorphism from \mathcal{A} to \mathcal{B}.

A back-and-forth system from \mathcal{A} to \mathcal{B} is a collection Γ of partial isomorphisms from \mathcal{A} to \mathcal{B} such that
(i) ("Forth") for all $\gamma \in \Gamma$ and $a \in A$ there is a $\gamma^{\prime} \in \Gamma$ such that γ^{\prime} extends γ and $a \in \operatorname{domain}\left(\gamma^{\prime}\right)$;
(ii) ("Back") for all $\gamma \in \Gamma$ and $b \in B$ there is a $\gamma^{\prime} \in \Gamma$ such that γ^{\prime} extends γ and $b \in \operatorname{codomain}\left(\gamma^{\prime}\right)$.

If Γ is a back-and-forth system from \mathcal{A} to \mathcal{B}, then $\Gamma^{-1}:=\left\{\gamma^{-1}: \gamma \in \Gamma\right\}$ is a back-and-forth system from \mathcal{B} to \mathcal{A}. We call \mathcal{A} and \mathcal{B} back-and-forth equivalent (notation: $\mathcal{A} \equiv_{\mathrm{bf}} \mathcal{B}$) if there exists a nonempty back-and-forth system from \mathcal{A} to \mathcal{B}. Hence $\mathcal{A} \equiv_{\text {bf }} \mathcal{A}$, and if $\mathcal{A} \equiv_{\mathrm{bf}} \mathcal{B}$, then $\mathcal{B} \equiv_{\mathrm{bf}} \mathcal{A}$.

Hausdorff's proof of Cantor's theorem in Section 4.1 generalizes as follows:
Proposition 4.2.1. Suppose \mathcal{A} and \mathcal{B} are countable and $\mathcal{A} \equiv_{\mathrm{bf}} \mathcal{B}$. Then $\mathcal{A} \cong \mathcal{B}$.
Proof. Let Γ be a nonempty back-and-forth system from \mathcal{A} to \mathcal{B}. We proceed as in the proof of Cantor's theorem, and construct a sequence $\left(\gamma_{n}\right)$ in Γ such that each γ_{n+1} extends $\gamma_{n}, A=\bigcup_{n}$ domain $\left(\gamma_{n}\right)$ and $B=\bigcup_{n} \operatorname{codomain}\left(\gamma_{n}\right)$. Then the map $A \rightarrow B$ that extends each γ_{n} is an isomorphism $\mathcal{A} \rightarrow \mathcal{B}$.

In applying this proposition and the next one in a concrete situation, the key is to guess a back-and-forth system. That is where insight and imagination (and experience) come in. The next result has no countability assumption.

Proposition 4.2.2. If $\mathcal{A} \equiv_{\mathrm{bf}} \mathcal{B}$, then $\mathcal{A} \equiv \mathcal{B}$.
Proof. Suppose Γ is a nonempty back-and-forth system from \mathcal{A} to \mathcal{B}. We claim that for any L-formula $\varphi\left(y_{1}, \ldots, y_{n}\right)$ and all $\gamma \in \Gamma$ and $a_{1}, \ldots, a_{n} \in \operatorname{domain}(\gamma)$,

$$
\mathcal{A} \models \varphi\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow \mathcal{B} \models \varphi\left(\gamma a_{1}, \ldots, \gamma a_{n}\right)
$$

(For $n=0$ this gives $\mathcal{A} \equiv \mathcal{B}$, but the claim is much stronger.) Exercise 4 of Section 3.3 shows that it is enough to prove this claim for unnested φ.

We proceed by induction on the number of logical symbols in unnested formulas $\varphi\left(y_{1}, \ldots, y_{n}\right)$. The case of unnested atomic formulas follows directly from the definition of partial isomorphism. The connectives \neg, \vee, \wedge present no problem. For $\exists x \psi\left(x, y_{1}, \ldots, y_{n}\right)$, use the back-and-forth property. As to $\forall x \psi\left(x, y_{1}, \ldots, y_{n}\right)$, use that it is equivalent to $\neg \exists x \neg \psi\left(x, y_{1}, \ldots, y_{n}\right)$.

Exercises.

(1) Define a finite restriction of a bijection $\gamma: X \rightarrow Y$ to be a map $\gamma \mid E: E \rightarrow \gamma(E)$ with finite $E \subseteq X$. If Γ is a back-and-forth system from \mathcal{A} to \mathcal{B}, so is the set of finite restrictions of members of Γ.
(2) If $\mathcal{A} \equiv_{\text {bf }} \mathcal{B}$ and $\mathcal{B} \equiv_{\text {bf }} \mathcal{C}$, then $\mathcal{A} \equiv_{\text {bf }} \mathcal{C}$.

4.3 Quantifier Elimination

First an example from high school algebra. The ordered field of real numbers is the structure $(\mathbf{R} ;<, 0,1,+,-, \cdot)$. In this structure the formula

$$
\varphi(a, b, c):=\exists y\left(a y^{2}+b y+c=0\right)
$$

is equivalent to the q-free formula

$$
\left(a \neq 0 \wedge b^{2} \geq 4 a c\right) \vee(a=0 \wedge b \neq 0) \vee(a=0 \wedge b=0 \wedge c=0)
$$

(Here the coefficients a, b, c are free variables and the "unknown" y is existentially quantified.) This equivalence gives an effective test for the existence of a y with a certain property, which avoids in particular having to check infinitely many values of y (even uncountably many in the case above). This illustrates the kind of property quantifier elimination is.

Another example: in every field, the formula

$$
\forall y((a x+b y=0 \wedge c x+d y=0) \rightarrow y=0)
$$

is equivalent to the q-free formula $a d \neq b c$. Roughly speaking, the role of determinants, discriminants, resultants, and the like is to eliminate a (quantified) variable.

The role of the general coefficients a, b, c, d in these examples is taken over in this section by a tuple $x=\left(x_{1}, \ldots, x_{n}\right)$ of distinct variables.

Definition. Σ has quantifier elimination (QE) if every L-formula $\varphi(x)$ is Σ equivalent to a quantifier free (short: q-free) L-formula $\varphi^{\mathrm{qf}}(x)$.

By taking $n=0$ in this definition we see that if Σ has QE, then every L-sentence is Σ-equivalent to a q-free L-sentence.

Lemma 4.3.1. Suppose Σ has QE and \mathcal{B} and \mathcal{C} are models of Σ with a common substructure \mathcal{A} (we do not assume $\mathcal{A} \models \Sigma$). Then \mathcal{B} and \mathcal{C} satisfy the same $L_{A^{-}}$sentences.

Proof. Let σ be an L_{A}-sentence. We have to show $\mathcal{B} \models \sigma \Leftrightarrow \mathcal{C} \models \sigma$. Write σ as $\varphi(a)$ with $\varphi(x)$ an L-formula and $a \in A^{n}$. Take a q-free L-formula $\varphi^{\mathrm{qf}}(x)$ that is Σ-equivalent to $\varphi(x)$. Then $\mathcal{B} \models \sigma$ iff $\mathcal{B} \models \varphi^{\mathrm{qf}}(a)$ iff $\mathcal{A} \models \varphi^{\mathrm{qf}}(a)$ (by Exercise 8 of Section 2.5) iff $\mathcal{C} \models \varphi^{\mathrm{qf}}(a)$ (by the same exercise) iff $\mathcal{C} \models \sigma$.

Corollary 4.3.2. Suppose Σ has a model, has QE, and there exists an L structure that can be embedded into every model of Σ. Then Σ is complete.
Proof. Take an L-structure \mathcal{A} that can be embedded into every model of Σ. Let \mathcal{B} and \mathcal{C} be any two models of Σ. So \mathcal{A} is isomorphic to a substructure of \mathcal{B} and of \mathcal{C}. Then by a slight rewording of the proof of Lemma 4.3.1 (considering only L-sentences), we see that \mathcal{B} and \mathcal{C} satisfy the same L-sentences. It follows that Σ is complete.

Remark. We have seen that Vaught's test can be used to prove completeness. The above corollary gives another way of establishing completeness, and is often applicable when the hypothesis of Vaught's Test is not satisfied. Completeness is only one of the nice consequences of QE , and the easiest one to explain at this stage. The main impact of QE is rather that it gives access to the structural properties of definable sets. This will be reflected in exercises at the end of this section. Applications of model theory to other areas of mathematics often involve QE as a key step.
A basic conjunction in L is by definition a conjunction of atomic and negated atomic L-formulas. Each q-free L-formula $\varphi(x)$ is equivalent to a disjunction $\varphi_{1}(x) \vee \cdots \vee \varphi_{k}(x)$ of basic conjunctions $\varphi_{i}(x)$ in L ("disjunctive normal form"). In what follows y is a single variable distinct from the variables x_{1}, \ldots, x_{n} in a tuple $x=\left(x_{1}, \ldots, x_{n}\right)$.
Lemma 4.3.3. Suppose that for every basic conjunction $\theta(x, y)$ in L there is a q-free L-formula $\theta^{\mathrm{qf}}(x)$ such that

$$
\Sigma \vdash \exists y \theta(x, y) \leftrightarrow \theta^{\mathrm{qf}}(x)
$$

Then Σ has QE.
Proof. Let us say that an L-formula $\varphi(x)$ has Σ-QE if it is Σ-equivalent to a qfree L-formula $\varphi^{\mathrm{qf}}(x)$. Note that if the L-formulas $\varphi_{1}(x)$ and $\varphi_{2}(x)$ have Σ-QE, then $\neg \varphi_{1}(x),\left(\varphi_{1} \vee \varphi_{2}\right)(x)$, and $\left(\varphi_{1} \wedge \varphi_{2}\right)(x)$ have Σ-QE.

Next, let $\varphi(x)=\exists y \psi(x, y)$, and suppose inductively that the L-formula $\psi(x, y)$ has Σ-QE. Hence $\psi(x, y)$ is Σ-equivalent to a disjunction $\bigvee_{i} \psi_{i}(x, y)$ of basic conjunctions $\psi_{i}(x, y)$ in L, with i ranging over some finite index set. In view of the equivalence of $\exists y \bigvee_{i} \psi_{i}(x, y)$ with $\bigvee_{i} \exists y \psi_{i}(x, y)$ we obtain

$$
\Sigma \vdash \varphi(x) \longleftrightarrow \bigvee_{i} \exists y \psi_{i}(x, y)
$$

Each $\exists y \psi_{i}(x, y)$ has Σ-QE, by hypothesis, so $\varphi(x)$ has Σ-QE.
Finally, let $\varphi(x)=\forall y \psi(x, y)$, and suppose inductively that the L-formula $\psi(x, y)$ has Σ-QE. This case reduces to the previous case since $\varphi(x)$ is equivalent to $\neg \exists y \neg \psi(x, y)$.

In the following theorem, let Σ be the set of axioms for dense totally ordered set without endpoints (in the language L_{O}).

Theorem 4.3.4. Σ has QE.
Proof. Let $(x, y)=\left(x_{1}, \ldots, x_{n}, y\right)$ be a tuple of $n+1$ distinct variables, and consider a basic conjunction $\varphi(x, y)$ in L_{O}. By Lemma 4.3 .3 it suffices to show that $\exists y \varphi(x, y)$ is Σ-equivalent to a q -free formula $\psi(x)$. We may assume that each conjunct of φ is of one of the following types:

$$
y=x_{i}, \quad x_{i}<y, \quad y<x_{i} \quad(1 \leq i \leq n) .
$$

To justify this, observe that if we had instead a conjunct $y \neq x_{i}$ then we could replace it by $\left(y<x_{i}\right) \vee\left(x_{i}<y\right)$ and use the fact that $\exists y\left(\varphi_{1}(x, y) \vee \varphi_{2}(x, y)\right)$ is equivalent to $\exists y \varphi_{1}(x, y) \vee \exists y \varphi_{2}(x, y)$. Similarly, a negation $\neg\left(y<x_{i}\right)$ can be replaced by the disjunction $y=x_{i} \vee x_{i}<y$, and likewise with negations $\neg\left(x_{i}<y\right)$. Also conjuncts in which y does not appear can be eliminated because

$$
\vdash \exists y(\psi(x) \wedge \theta(x, y)) \longleftrightarrow \psi \psi(x) \wedge \exists y \theta(x, y) .
$$

Suppose that we have a conjunct $y=x_{i}$ in $\varphi(x, y)$, so, $\varphi(x, y)$ is equivalent to $y=x_{i} \wedge \varphi^{\prime}(x, y)$, where $\varphi^{\prime}(x, y)$ is a basic conjunction in L_{O}. Then $\exists y \varphi(x, y)$ is equivalent to $\varphi^{\prime}\left(x, x_{i}\right)$, and we are done. So we can assume also that $\varphi(x, y)$ has no conjuncts of the form $y=x_{i}$.

After all these reductions, and after rearranging conjuncts we can assume that $\varphi(x, y)$ is a conjunction

$$
\bigwedge_{i \in I} x_{i}<y \wedge \bigwedge_{j \in J} y<x_{j}
$$

where $I, J \subseteq\{1, \ldots, n\}$ and where we allow I or J to be empty. Up till this point we did not need the density and "no endpoints" axioms, but these come in now: $\exists y \varphi(x, y)$ is Σ-equivalent to the formula

$$
\bigwedge_{i \in I, j \in J} x_{i}<x_{j} .
$$

We mention without proof two important examples of QE, and give a complete proof for a third example in the next section. The following theorem is due to Tarski and (independently) to Chevalley. It dates from around 1950.

Theorem 4.3.5. ACF has QE.
Clearly, ACF is not complete, since it says nothing about the characteristic: it doesn't prove $1+1=0$, nor does it prove $1+1 \neq 0$. However, $\operatorname{ACF}(0)$, which contains additional axioms forcing the characteristic to be 0 , is complete by 4.3.2 and the fact that the ring of integers embeds in every algebraically closed field
of characteristic 0 . Tarski also established the following more difficult theorem, which is one of the key results in real algebraic geometry. (His original proof is rather long; there is a shorter one due to A. Seidenberg, and an elegant short proof by A. Robinson using a combination of basic algebra and elementary model theory.)

Definition. RCF is a set of axioms true in the ordered field ($\mathbf{R} ;<, 0,1,-,+, \cdot)$ of real numbers. In addition to the ordered field axioms, it has the axiom $\forall x\left(x>0 \rightarrow \exists y\left(x=y^{2}\right)\right)(x, y$ distinct variables) and for each odd $n>1$ the axiom

$$
\forall x_{1} \ldots x_{n} \exists y\left(y^{n}+x_{1} y^{n-1}+\cdots+x_{n}=0\right)
$$

where x_{1}, \ldots, x_{n}, y are distinct variables. The models of RCF are known as real closed ordered fields.

Theorem 4.3.6. RCF has QE and is complete.
Exercises. In (5) and (6), an L-theory is a set T of L-sentences such that for all L-sentences σ, if $T \vdash \sigma$, then $\sigma \in T$. An axiomatization of an L-theory T is a set Σ of L-sentences such that $T=\{\sigma: \sigma$ is an L-sentence and $\Sigma \vdash \sigma\}$.
(1) The subsets of \mathbf{C} definable in $(\mathbf{C} ; 0,1,-,+, \cdot)$ are exactly the finite subsets of \mathbf{C} and their complements in C. (Hint: use the fact that ACF has QE.)
(2) The subsets of \mathbf{R} definable in the ordered field ($\mathbf{R} ;<, 0,1,-,+, \cdot)$ of real numbers are exactly the finite unions of intervals of all kinds (including degenerate intervals with just one point) (Hint: use the fact that RCF has QE.)
(3) Find a set Eq_{∞} of sentences in the language $L=\{\sim\}$ where \sim is a binary relation symbol, whose models are the L-structures $\mathcal{A}=(A ; \sim)$ such that:
(i) \sim is an equivalence relation on A;
(ii) every equivalence class is infinite;
(iii) there are infinitely many equivalence classes.

Show that Eq_{∞} admits QE and is complete. (It is also possible to use Vaught's test to prove completeness.)
(4) Suppose that a set Σ of L-sentences has QE. Let the language L^{\prime} extend L by new symbols of arity 0 , and let $\Sigma^{\prime} \supseteq \Sigma$ be a set of L^{\prime}-sentences. Then Σ^{\prime} (as a set of L^{\prime}-sentences) also has QE.
(5) Suppose the L-theory T has QE. Then T has an axiomatization consisting of sentences $\forall x \exists y \varphi(x, y)$ and $\forall x \psi(x)$ where $\varphi(x, y)$ and $\psi(x)$ are q -free. (Hint: let Σ be the set of L-sentences provable from T that have the indicated form; show that Σ has QE, and is an axiomatization of T.)
(6) Assume the L-theory T has built-in Skolem functions, that is, for each basic conjunction $\varphi(x, y)$ there are L-terms $t_{1}(x), \ldots, t_{k}(x)$ such that

$$
T \vdash \exists y \varphi(x, y) \rightarrow \varphi\left(x, t_{1}(x)\right) \vee \cdots \vee \varphi\left(x, t_{k}(x)\right)
$$

Then T has QE , for every $\varphi(x, y)$ there are L-terms $t_{1}(x), \ldots, t_{k}(x)$ such that $T \vdash \exists y \varphi(x, y) \rightarrow \varphi\left(x, t_{1}(x)\right) \vee \cdots \vee \varphi\left(x, t_{k}(x)\right)$, and T has an axiomatization consisting of sentences $\forall x \psi(x)$ where $\psi(x)$ is q-free.

4.4 Presburger Arithmetic

In this section we consider in some detail one example of a set of axioms that has QE, namely "Presburger Arithmetic." Essentially, this is a complete set of axioms for ordinary arithmetic of integers without multiplication, that is, the axioms are true in $(\mathbf{Z} ; 0,1,+,-,<)$, and prove every sentence true in this structure. There is a mild complication in trying to obtain this completeness via QE: one can show (exercise) that for any q-free formula $\varphi(x)$ in the language $\{0,1,+,-,<\}$ there is an $N \in \mathbf{N}$ such that either $(\mathbf{Z} ; 0,1,+,-,<) \models \varphi(n)$ for all $n>N$ or $(\mathbf{Z} ; 0,1,+,-,<) \models \neg \varphi(n)$ for all $n>N$. In particular, formulas such as $\exists y(x=y+y)$ and $\exists y(x=y+y+y)$ are not Σ-equivalent to any q-free formula in this language, for any set Σ of axioms true in ($\mathbf{Z} ; 0,1,+,-,<)$.

To overcome this obstacle to QE we augment the language $\{0,1,+,-,<\}$ by new unary relation symbols $P_{1}, P_{2}, P_{3}, P_{4}, \ldots$ to obtain the language $L_{\text {PrA }}$ of Presburger Arithmetic (named after the Polish logician Presburger who was a student of Tarski). We expand $(\mathbf{Z} ; 0,1,+,-,<)$ to the L_{PrA}-structure

$$
\tilde{\mathbf{Z}}=(\mathbf{Z} ; 0,1,+,-,<, \mathbf{Z}, 2 \mathbf{Z}, 3 \mathbf{Z}, 4 \mathbf{Z}, \ldots)
$$

that is, P_{n} is interpreted as the set $n \mathbf{Z}$. This structure satisfies the set PrA of Presburger Axioms which consists of the following sentences:
(i) the axioms of Ab for abelian groups;
(ii) the axioms in Section 4.1 expressing that $<$ is a total order;
(iii) $\forall x \forall y \forall z(x<y \rightarrow x+z<y+z)$ (translation invariance of $<$);
(iv) $0<1 \wedge \neg \exists y(0<y<1)$ (discreteness axiom);
(v) $\forall x \exists y \bigvee_{0 \leq r<n} x=n y+r 1, \quad n=1,2,3, \ldots$ (division with remainder);
(vi) $\forall x\left(P_{n} x \leftrightarrow \exists y(x=n y)\right), \quad n=1,2,3, \ldots\left(\right.$ defining axioms for $\left.P_{1}, P_{2}, \ldots\right)$.

Here we have fixed distinct variables x, y, z for definiteness. In (v) and in the rest of this section r ranges over integers. Note that (v) and (vi) are infinite lists of axioms. Here are some elementary facts about models of PrA :
Proposition 4.4.1. Let $\mathcal{A}=\left(A ; \underset{\sim}{0}, 1,+,-,<, P_{1}^{\mathcal{A}}, P_{2}^{\mathcal{A}}, P_{3}^{\mathcal{A}}, \ldots\right) \models \operatorname{PrA}$. Then
(1) There is a unique embedding $\tilde{\mathbf{Z}} \longrightarrow \mathcal{A}$; it sends $k \in \mathbf{Z}$ to $k 1 \in A$.
(2) Given any $n>0$ we have $P_{n}^{\mathcal{A}}=n \mathcal{A}$, where we regard \mathcal{A} as an abelian group, and $\mathcal{A} / n \mathcal{A}$ has exactly n elements, namely $0+n \mathcal{A}, \ldots,(n-1) 1+n \mathcal{A}$.
(3) For any $n>0$ and $a \in A$, exactly one of the $a, a+1, \ldots, a+(n-1) 1$ lies in $n \mathcal{A}$;
(4) \mathcal{A} is torsion-free as an abelian group.

Theorem 4.4.2. PrA has QE.
Proof. Let $(x, y)=\left(x_{1}, \ldots, x_{n}, y\right)$ be a tuple of $n+1$ distinct variables, and consider a basic conjunction $\varphi(x, y)$ in L_{PrA}. By Lemma 4.3 .3 it suffices to show that $\exists y \varphi(x, y)$ is PrA-equivalent to a q -free formula $\psi(x)$. We may assume that each conjunct of φ is of one of the following types, where m, N are natural numbers ≥ 1 and $t(x)$ is an L_{PrA}-term:

$$
m y=t(x), \quad m y<t(x), \quad t(x)<m y, \quad P_{N}(m y+t(x))
$$

To justify this assumption observe that if we had instead a conjunct $m y \neq t(x)$ then we could replace it by $(m y<t(x)) \vee(t(x)<m y)$ and use the fact that $\exists y\left(\varphi_{1}(x, y) \vee \varphi_{2}(x, y)\right)$ is equivalent to $\exists y \varphi_{1}(x, y) \vee \exists y \varphi_{2}(x, y)$. Similarly, a negation $\neg P_{N}(m y+t(x))$ can be replaced by the disjunction

$$
P_{N}(m y+t(x)+1) \vee \ldots \vee P_{N}(m y+t(x)+(n-1) 1)
$$

Also conjuncts in which y does not appear can be eliminated because

$$
\vdash \exists y(\psi(x) \wedge \theta(x, y)) \longleftrightarrow \psi(x) \wedge \exists y \theta(x, y)
$$

Since $\operatorname{PrA} \vdash P_{N}(z) \leftrightarrow P_{r N}(r z)$ for $r>0$ we can replace $P_{N}(m y+t(x))$ by $P_{r N}(r m y+r t(x))$. Also, for $r \geq 1$ we can replace $m y=t(x)$ by $r m y=r t(x)$, and likewise with $m y<t(x)$ and $t(x)<m y$. We can therefore assume that all conjuncts have the same "coefficient" m in front of the variable y. After all these reductions, and after rearranging conjuncts, $\varphi(x, y)$ has the form

$$
\bigwedge_{h \in H} m y=t_{h}(x) \wedge \bigwedge_{i \in I} t_{i}(x)<m y \wedge \bigwedge_{j \in J} m y<t_{j}(x) \wedge \bigwedge_{k \in K} P_{N(k)}\left(m y+t_{k}(x)\right)
$$

where $m \geq 1, H, I, J, K$ are disjoint finite index sets, and each $N(k)$ is a natural number ≥ 1. We allow some of these index sets to be empty in which case the corresponding conjunction can be left out.

Suppose that $H \neq \emptyset$, say $h^{\prime} \in H$. Then the formula $\exists y \varphi(x, y)$ is PrAequivalent to

$$
\left.\left.\begin{array}{rl}
P_{m}\left(t_{h^{\prime}}(x)\right) \wedge \bigwedge_{h \in H} t_{h}(x)=t_{h^{\prime}}(x) \wedge & \bigwedge_{i \in I} t_{i}(x)<t_{h^{\prime}}(x)
\end{array}\right) \bigwedge_{j \in J} t_{h^{\prime}}(x)<t_{j}(x)\right\} \text { } \begin{aligned}
& \bigwedge_{k \in K} P_{N(k)}\left(t_{h^{\prime}}(x)+t_{k}(x)\right)
\end{aligned}
$$

For the rest of the proof we assume that $H=\emptyset$.
To understand what follows, it may help to focus on the model $\tilde{\mathbf{Z}}$, although the arguments go through for arbitrary models of PrA. Fix any value $a \in \mathbf{Z}^{n}$ of x. Consider the system of linear congruences (with "unknown" y)

$$
P_{N(k)}\left(m y+t_{k}(a)\right), \quad(k \in K)
$$

which in more familiar notation would be written as

$$
m y+t_{k}(a) \equiv 0 \quad \bmod N(k), \quad(k \in K)
$$

The solutions in \mathbf{Z} of this system form a union of congruence classes modulo $N:=\prod_{k \in K} N(k)$, where as usual we put $N=1$ for $K=\emptyset$. This suggests replacing y successively by $N z, 1+N z, \ldots,(N-1) 1+N z$. Our precise claim is that $\exists y \varphi(x, y)$ is PrA-equivalent to the formula $\theta(x)$ given by

$$
\begin{aligned}
\bigvee_{r=0}^{N-1}\left(\bigwedge _ { k \in K } P _ { N (k) } ((m r) 1 + t _ { k } (x)) \wedge \exists z \left(\bigwedge_{i \in I} t_{i}(x)\right.\right. & <m(r 1+N z) \\
& \left.\left.\wedge \bigwedge_{j \in J} m(r 1+N z)<t_{j}(x)\right)\right)
\end{aligned}
$$

We prove this equivalence with $\theta(x)$ as follows. Suppose

$$
\mathcal{A}=(A ; \ldots) \mid=\operatorname{PrA}, \quad a=\left(a_{1}, \ldots, a_{n}\right) \in A^{n} .
$$

We have to show that $\mathcal{A} \models \exists y \varphi(a, y)$ if and only if $\mathcal{A} \models \theta(a)$. So let $b \in A$ be such that $\mathcal{A} \models \varphi(a, b)$. Division with remainder yields a $c \in A$ and an r such that $b=r 1+N c$ and $0 \leq r \leq N-1$. Note that then for $k \in K$,

$$
m b+t_{k}(a)=m(r 1+N c)+t_{k}(a)=(m r) 1+(m N) c+t_{k}(a) \in N(k) \mathcal{A}
$$

and so $\mathcal{A} \models P_{N(k)}\left((m r) 1+t_{k}(a)\right)$. Also,

$$
\begin{array}{cc}
t_{i}(a)<m(r 1+N c) & \text { for every } i \in I \\
m(r 1+N c)<t_{j}(a) & \text { for every } j \in J
\end{array}
$$

Therefore $\mathcal{A} \models \theta(a)$ with $\exists z$ witnessed by c. For the converse, suppose that the disjunct of $\theta(a)$ indexed by a certain $r \in\{0, \ldots, N-1\}$ is true in \mathcal{A}, with $\exists z$ witnessed by $c \in A$. Then put $b=r 1+N c$ and we get $\mathcal{A} \models \varphi(a, b)$. This proves the claimed equivalence.

Now that we have proved the claim we have reduced to the situation (after changing notation) where $H=K=\emptyset$ (no equations and no congruences). So $\varphi(x, y)$ now has the form

$$
\bigwedge_{i \in I} t_{i}(x)<m y \wedge \bigwedge_{j \in J} m y<t_{j}(x)
$$

If $J=\emptyset$ or $I=\emptyset$ then $\operatorname{PrA} \vdash \exists y \varphi(x, y) \leftrightarrow \top$. This leaves the case where both I and J are nonempty. So suppose $\mathcal{A} \vDash \operatorname{PrA}$ and that A is the underlying set of \mathcal{A}. For each value $a \in A^{n}$ of x there is $i_{0} \in I$ such that $t_{i_{0}}(a)$ is maximal among the $t_{i}(a)$ with $i \in I$, and a $j_{0} \in J$ such that $t_{j_{0}}(a)$ is minimal among the $t_{j}(a)$ with $j \in J$. Moreover each interval of m successive elements of A contains an element of $m \mathcal{A}$. Therefore $\exists y \varphi(x, y)$ is equivalent in \mathcal{A} to the disjunction over all pairs $\left(i_{0}, j_{0}\right) \in I \times J$ of the q-free formula

$$
\begin{aligned}
& \bigwedge_{i \in I} t_{i}(x) \leq t_{i_{0}}(x) \wedge \bigwedge_{j \in J} t_{j_{0}}(x) \leq t_{j}(x) \\
& \wedge \bigvee_{r=1}^{m}\left(P_{m}\left(t_{i_{0}}(x)+r 1\right) \wedge\left(t_{i_{0}}(x)+r 1<t_{j_{0}}(x)\right)\right) .
\end{aligned}
$$

This completes the proof. Note that L_{PrA} does not contain the relation symbol \leq; we just write $t \leq t^{\prime}$ to abbreviate $\left(t<t^{\prime}\right) \vee\left(t=t^{\prime}\right)$.

Remark. It now follows from Corollary 4.3.2 that PrA is complete: it has QE and $\tilde{\mathbf{Z}}$ can be embedded in every model.

Discussion. The careful reader will have noticed that the elimination procedure in the proof above is constructive: it describes an algorithm that, given any basic conjunction $\varphi(x, y)$ in L_{PrA} as input, constructs a q-free formula $\psi(x)$ of L_{PrA} such that $\operatorname{PrA} \vdash \exists y \varphi(x, y) \leftrightarrow \psi(x)$. In view of the equally constructive proof of Lemma 4.3.3 this yields an algorithm that, given any $L_{\text {PrA }}$-formula $\varphi(x)$ as input, constructs a q-free L_{PrA}-formula $\varphi^{\mathrm{qf}}(x)$ such that $\operatorname{PrA} \vdash \varphi(x) \leftrightarrow \varphi^{\mathrm{qf}}(x)$. (Thus PrA has effective QE.)

In particular, this last algorithm constructs for any L_{PrA}-sentence σ a q-free L_{PrA}-sentence σ^{qf} such that $\operatorname{PrA} \vdash \sigma \leftrightarrow \sigma^{\mathrm{qf}}$. Since we also have an obvious algorithm that, given any q-free L_{PrA}-sentence $\sigma^{\text {qf }}$, checks whether σ^{qf} is true in $\tilde{\mathbf{Z}}$, this yields an algorithm that, given any L_{PrA}-sentence σ, checks whether σ is true in $\tilde{\mathbf{Z}}$. Thus the structure $\tilde{\mathbf{Z}}$ is decidable. (A precise definition of decidability will be given in the next Chapter.) The algorithms above can easily be implemented by computer programs.

Let some L-structure \mathcal{A} be given, and suppose we have an algorithm for deciding whether any given L-sentence is true in \mathcal{A}. Even if we manage to write a computer program that implements this algorithm, there is no guarantee that the program is of practical use, or feasible: on some moderately small inputs it might have to run for 10^{100} years before producing an output. This bad behaviour is not at all unusual: no (classical, sequential) algorithm for deciding the truth of L_{PrA}-sentences in $\tilde{\mathbf{Z}}$ is feasible in a precise technical sense. Results of this kind belong to complexity theory; this is an area where mathematics (logic, number theory,...) and computer science interact.

There do exist feasible integer linear programming algorithms that decide the truth in $\tilde{\mathbf{Z}}$ of sentences of a special form, and this shows another (very practical) side of complexity theory.

A positive impact of QE is that it yields structural properties of definable sets, as in Exercises (1) and (2) of Section 4.3, and as we discuss next for $\tilde{\mathbf{Z}}$.

Definition. Let d be a positive integer. An arithmetic progression of modulus d is a set of the form

$$
\{k \in \mathbf{Z}: k \equiv r \bmod d, \alpha<k<\beta\},
$$

where $r \in\{0, \ldots, d-1\}, \alpha, \beta \in \mathbf{Z} \cup\{-\infty,+\infty\}, \alpha<\beta$.
We leave the proof of the next lemma to the reader.
Lemma 4.4.3. Arithmetic progressions have the following properties.
(1) If $P, Q \subseteq \mathbf{Z}$ are arithmetic progressions of moduli d and e respectively, then $P \cap Q$ is an arithmetic progression of modulus $\operatorname{lcm}(d, e)$.
(2) If $P \subseteq \mathbf{Z}$ is an arithmetic progression, then $\mathbf{Z} \backslash P$ is a finite union of arithmetic progressions.
(3) Let \mathcal{P} be the collection of all finite unions of arithmetic progressions. Then \mathcal{P} contains with any two sets X, Y also $X \cup Y, X \cap Y, X \backslash Y$.

Corollary 4.4.4. Let $S \subseteq \mathbf{Z}$. Then
S is definable in $\tilde{\mathbf{Z}} \Longleftrightarrow S$ is a finite union of arithmetic progressions.
Proof. (\Leftarrow) It suffices to show that each arithmetic progression is definable in $\tilde{\mathbf{Z}}$; this is straightforward and left to the reader. (\Rightarrow) By QE and Lemma 4.4.3 it suffices to show that each atomic L_{PrA}-formula $\varphi(x)$ defines in $\tilde{\mathbf{Z}}$ a finite union of arithmetic progressions. Every atomic formula $\varphi(x)$ different from \top and \perp has the form $t_{1}(x)<t_{2}(x)$ or the form $t_{1}(x)=t_{2}(x)$ or the form $P_{d}(t(x))$, where $t_{1}(x), t_{2}(x)$ and $t(x)$ are L_{PrA}-terms. The first two kinds reduce to $t(x)>0$ and $t(x)=0$ respectively (by subtraction). It follows that we may assume that $\varphi(x)$ has the form $k x+l 1>0$, or the form $k x+l 1=0$, or the form $P_{d}(k x+l 1)$, where $k, l \in \mathbf{Z}$. Considering cases $(k=0, k \neq 0$ and $k \equiv 0 \bmod d$, and so on), we see that such a $\varphi(x)$ defines an arithmetic progression.

Exercises.

(1) The set $2 \mathbf{Z}$ cannot be defined in the structure $(\mathbf{Z} ; 0,1,+,-,<)$ by a q-free formula of the language $\{0,1,+,-,<\}$.

4.5 Skolemization and Extension by Definition

In this section L is a sublanguage of L^{\prime}, Σ is a set of L-sentences, and Σ^{\prime} is a set of L^{\prime}-sentences with $\Sigma \subseteq \Sigma^{\prime}$.
Definition. Σ^{\prime} is said to be conservative over Σ (or a conservative extension of Σ) if for every L-sentence σ,

$$
\Sigma^{\prime} \vdash_{L^{\prime}} \sigma \Longleftrightarrow \Sigma \vdash_{L} \sigma
$$

Here (\Longrightarrow) is the significant direction, since (\Longleftarrow) is automatic. Note:
(1) If Σ^{\prime} is conservative over Σ, then: Σ is consistent $\Leftrightarrow \Sigma^{\prime}$ is consistent.
(2) If each model of Σ has an L^{\prime}-expansion to a model of Σ^{\prime}, then Σ^{\prime} is conservative over Σ. (This follows easily from the Completeness Theorem.)

Proposition 4.5.1. Let $\varphi(x, y)$ be an L-formula, $x=\left(x_{1}, \ldots, x_{m}\right)$. Let f_{φ} be an m-ary function symbol not in L, and put $L^{\prime}:=L \cup\left\{f_{\varphi}\right\}$ and

$$
\Sigma^{\prime}:=\Sigma \cup\left\{\forall x\left(\exists y \varphi(x, y) \rightarrow \varphi\left(x, f_{\varphi}(x)\right)\right)\right\}
$$

where $\forall x:=\forall x_{1} \ldots \forall x_{m}$. Then Σ^{\prime} is conservative over Σ.
Proof. Let \mathcal{A} be any model of Σ. By (2) above it suffices to obtain an L^{\prime} expansion \mathcal{A}^{\prime} of \mathcal{A} that makes the new axiom about f_{φ} true. Choose a function $f: A^{n} \longrightarrow A$ as follows. For any $a \in A^{m}$, if there is a $b \in A$ such that $\mathcal{A} \models \varphi(a, b)$ then we let $f(a)$ be such an element b, and if no such b exists, we let $f(a)$ be an arbitrary element of A. Interpreting f_{φ} as the function f gives an L^{\prime}-expansion \mathcal{A}^{\prime} of \mathcal{A} with

$$
\mathcal{A}^{\prime} \models \exists y \varphi(x, y) \rightarrow \varphi\left(x, f_{\varphi}(x)\right)
$$

as desired.

Remark. A function f as in the proof is called a Skolem function in \mathcal{A} for the formula $\varphi(x, y)$. It yields a "witness" for each relevant m-tuple.

Definition. Given an L-formula $\varphi(x)$ with $x=\left(x_{1}, \ldots, x_{m}\right)$, let R_{φ} be an m-ary relation symbol not in L, and put $L_{\varphi}:=L \cup\left\{R_{\varphi}\right\}$ and

$$
\Sigma_{\varphi}:=\Sigma \cup\left\{\forall x\left(\varphi(x) \leftrightarrow R_{\varphi}(x)\right)\right\} .
$$

The sentence $\forall x\left(\varphi(x) \leftrightarrow R_{\varphi}(x)\right)$ is called the defining axiom for R_{φ}. We call Σ_{φ} an extension of Σ by a definition for the relation symbol R_{φ}.

Remark. Each model \mathcal{A} of Σ has a unique L_{φ}-expansion $\mathcal{A}_{\varphi} \models \Sigma_{\varphi}$. Every model of Σ_{φ} is of the form \mathcal{A}_{φ} for a unique model \mathcal{A} of Σ.

Proposition 4.5.2. Let $\varphi=\varphi(x)$ be as above. Then:
(1) Σ_{φ} is conservative over Σ.
(2) For each L_{φ}-formula $\psi(y)$ where $y=\left(y_{1}, \ldots, y_{n}\right)$ there is an L-formula $\psi^{*}(y)$, called a translation of $\psi(y)$, such that $\Sigma_{\varphi} \vdash \psi(y) \leftrightarrow \psi^{*}(y)$.
(3) Suppose $\mathcal{A} \models \Sigma$ and $S \subseteq A^{m}$. Then S is 0 -definable in \mathcal{A} if and only if S is 0-definable in \mathcal{A}_{φ}, and the same with definable instead of 0-definable.

Proof. (1) is clear from the remark preceding the proposition, and (3) is immediate from (2). To prove (2) we observe that by the Equivalence Theorem (3.3.2) it suffices to prove it for formulas $\psi(y)=R_{\varphi} t_{1}(y) \ldots t_{m}(y)$ where the t_{i} are L-terms. In this case we can take

$$
\exists u_{1} \ldots \exists u_{m}\left(u_{1}=t_{1}(y) \wedge \ldots \wedge u_{m}=t_{m}(y) \wedge \varphi\left(u_{1} / x_{1}, \ldots, u_{m} / x_{m}\right)\right)
$$

as $\psi^{*}(y)$ where the variables u_{1}, \ldots, u_{m} do not appear in φ and are not among y_{1}, \ldots, y_{n}.

Definition. Suppose $\varphi(x, y)$ is an L-formula where $(x, y)=\left(x_{1}, \ldots, x_{m}, y\right)$ is a tuple of $m+1$ distinct variables, such that $\Sigma \vdash \forall x \exists!y \varphi(x, y)$, where $\exists^{!} y \varphi(x, y)$ abbreviates $\exists y(\varphi(x, y) \wedge \forall z(\varphi(x, z) \rightarrow y=z))$, with z a variable not occurring in φ and not among x_{1}, \ldots, x_{m}, y. Let f_{φ} be an m-ary function symbol not in L and put $L^{\prime}:=L \cup\left\{f_{\varphi}\right\}$ and

$$
\Sigma^{\prime}:=\Sigma \cup\left\{\forall x \varphi\left(x, f_{\varphi}(x)\right)\right\}
$$

The sentence $\forall x \varphi\left(x, f_{\varphi}(x)\right)$ is called the defining axiom for f_{φ}. We call Σ^{\prime} an extension of Σ by a definition for the function symbol f_{φ}.

Remark. Each model \mathcal{A} of Σ has a unique L^{\prime}-expansion $\mathcal{A}^{\prime} \models \Sigma^{\prime}$. Every model of Σ^{\prime} is of the form \mathcal{A}^{\prime} for a unique model \mathcal{A} of Σ. Proposition 4.5.2 goes through when $L_{\varphi}, \Sigma_{\varphi}$, and \mathcal{A} are replaced by $L^{\prime}, \Sigma^{\prime}$, and \mathcal{A}^{\prime}, respectively. We leave the proof of this as an exercise. (Hint: reduce the proof of the analogue of (2) to the case of an unnested formula.)

Definitional expansions. It is also useful to consider expansions of a structure \mathcal{A} by several primitives, each 0 -definable in \mathcal{A}. To discuss this situation, let \mathcal{A}^{\prime} be an L^{\prime}-expansion of the L-structure \mathcal{A}. Then we call \mathcal{A}^{\prime} a definitional expansion of \mathcal{A} if for each symbol $s \in L^{\prime} \backslash L$ the interpretation $s^{\mathcal{A}^{\prime}}$ of s in \mathcal{A}^{\prime} is 0 -definable in \mathcal{A}. Assume \mathcal{A}^{\prime} is a definitional expansion of \mathcal{A}. Take for each m-ary relation symbol R of $L^{\prime} \backslash L$ an L-formula $\varphi_{R}\left(x_{1}, \ldots, x_{m}\right)$ that defines the set $R^{\mathcal{A}^{\prime}} \subseteq A^{m}$ in \mathcal{A}, and for each n-ary function symbol F of $L^{\prime} \backslash L$ an L-formula $\varphi_{F}\left(x_{1}, \ldots, x_{n}, y\right)$ that defines the graph of the map $F^{\mathcal{A}^{\prime}}: A^{n} \rightarrow A$ in \mathcal{A}. For R as above, call the sentence

$$
\forall x_{1} \ldots \forall x_{m}\left(R x_{1} \ldots x_{m} \longleftrightarrow \varphi_{R}\left(x_{1}, \ldots, x_{m}\right)\right)
$$

the defining axiom for R, and for F as above, call the sentence

$$
\forall x_{1} \ldots \forall x_{n} \forall y\left(F x_{1} \ldots x_{n}=y \longleftrightarrow \varphi_{F}\left(x_{1}, \ldots, x_{n}, y\right)\right)
$$

the defining axiom for F. Let D be the set of defining axioms for the symbols in $L^{\prime} \backslash L$ obtained in this way. So D is a set of L^{\prime}-sentences.

Lemma 4.5.3. For each L^{\prime}-formula $\varphi^{\prime}(y)$, where $y=\left(y_{1}, \ldots, y_{n}\right)$, there is an L-formula $\varphi(y)$ such that $D \vdash \varphi^{\prime}(y) \longleftrightarrow \varphi(y)$.
The proof goes by induction on formulas using the Equivalence Theorem and is left to the reader. (It might help to restrict first to unnested formulas; see Section 3.3, Exercise (4).) Assume now that L and L^{\prime} are finite, so D is finite. Then the proof gives an effective procedure that on any input $\varphi^{\prime}(y)$ as in the lemma gives an output $\varphi(y)$ with the property stated in the lemma.
Defining \mathcal{A} in \mathcal{B}. Before introducing the next concept we consider a simple case. Let $(A ;<)$ be a totally ordered set, $A \neq \emptyset$. By a definition of $(A ;<)$ in a structure \mathcal{B} we mean an injective map $\delta: A \rightarrow B^{k}$, with $k \in \mathbf{N}$, such that
(i) $\delta(A) \subseteq B^{k}$ is definable in \mathcal{B}.
(ii) The set $\{(\delta(a), \delta(b)): a<b$ in $A\} \subseteq\left(B^{k}\right)^{2}=B^{2 k}$ is definable in \mathcal{B}.

For example, we have a definition $\delta: \mathbf{Z} \rightarrow \mathbf{N}^{2}$ of the ordered set $(\mathbf{Z} ;<)$ of integers in the additive monoid $(\mathbf{N} ; 0,+)$ of natural numbers, given by $\delta(n)=(n, 0)$ and $\delta(-n)=(0, n)$. (We leave it to the reader to check this.)

It can be shown with tools a little beyond the scope of these notes that no infinite totally ordered set can be defined in the field of complex numbers.

In order to extend this notion to arbitrary structures $\mathcal{A}=(A ; \ldots)$ we use the following notation and terminology. Let X, Y be sets, $f: X \rightarrow Y$ a map, and $S \subseteq X^{n}$. Then the f-image of S is the subset

$$
f(S):=\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right):\left(x_{1}, \ldots, x_{n}\right) \in S\right\}
$$

of Y^{n}. Also, given $k \in \mathbf{N}$, we use the bijection

$$
\left(\left(y_{11}, \ldots, y_{1 k}\right), \ldots,\left(y_{n 1}, \ldots, y_{n k}\right)\right) \mapsto\left(y_{11}, \ldots, y_{1 k}, \ldots, y_{n 1}, \ldots, y_{n k}\right)
$$

from $\left(Y^{k}\right)^{n}$ to $Y^{n k}$ to identify these two sets.

Definition. A definition of an L-structure \mathcal{A} in a structure \mathcal{B} is an injective $\operatorname{map} \delta: A \rightarrow B^{k}$, with $k \in \mathbf{N}$, such that
(i) $\delta(A) \subseteq B^{k}$ is definable in \mathcal{B};
(ii) for each m-ary $R \in L^{\mathrm{r}}$ the set $\delta\left(R^{\mathcal{A}}\right) \subseteq\left(B^{k}\right)^{m}=B^{m k}$ is definable in \mathcal{B};
(iii) For each n-ary $F \in L^{\mathrm{f}}$ the set $\delta\left(\right.$ graph of $\left.F^{\mathcal{A}}\right) \subseteq\left(B^{k}\right)^{n+1}=B^{(n+1) k}$ is definable in \mathcal{B}.

Remark. Here \mathcal{B} is a structure for a language L^{*} that may have nothing to do with the language L. Replacing everywhere "definable" by "0-definable", we get the notion of a 0 -definition of \mathcal{A} in \mathcal{B}.

A more general way of viewing a structure \mathcal{A} as in some sense living inside a structure \mathcal{B} is to allow δ to be an injective map from A into B^{k} / E for some equivalence relation E on B^{k} that is definable in \mathcal{B}, and imposing suitable conditions. Our special case corresponds to $E=$ equality on B^{k}. (We do not develop this idea here further: the right setting for it would be many-sorted structures, rather than our one-sorted structures.)

Recall that by Lagrange's "four squares" theorem we have

$$
\mathbf{N}=\left\{a^{2}+b^{2}+c^{2}+d^{2}: a, b, c, d \in \mathbf{Z}\right\}
$$

It follows that the inclusion map $\mathbf{N} \rightarrow \mathbf{Z}$ is a 0 -definition of $(\mathbf{N} ; 0,+, \cdot,<)$ in $(\mathbf{Z} ; 0,1,+,-, \cdot)$. The bijection

$$
a+b i \mapsto(a, b): \mathbf{C} \rightarrow \mathbf{R}^{2} \quad(a, b \in \mathbf{R})
$$

is a 0-definition of the field $(\mathbf{C} ; 0,1,+,-, \cdot)$ of complex numbers in the field $(\mathbf{R} ; 0,1,+,-, \cdot)$ of real numbers.

On the other hand, there is no definition of the field of real numbers in the field of complex numbers: this follows from the fact, stated earlier without proof, that no infinite totally ordered set admits a definition in the field of complex numbers. (A special case says that \mathbf{R}, considered as a subset of \mathbf{C}, is not definable in the field of complex numbers; this follows easily from the fact that ACF admits QE, see Section 4.3, exercise (1).) Indeed, it is known that the only fields definable in the field of complex numbers are finite fields and fields isomorphic to the field of complex numbers itself.

Proposition 4.5.4. Let $\delta: A \rightarrow B^{k}$ be a 0 -definition of the L-structure \mathcal{A} in the L^{*}-structure \mathcal{B}. Let x_{1}, \ldots, x_{n} be distinct variables (viewed as ranging over A), and let $x_{11}, \ldots, x_{1 k}, \ldots, x_{n 1}, \ldots, x_{n k}$ be $n k$ distinct variables (viewed as ranging over B). Then we have a map that assigns to each L-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ an L^{*}-formula $\delta \varphi\left(x_{11}, \ldots, x_{1 k}, \ldots, x_{n 1}, \ldots, x_{n k}\right)$ such that

$$
\delta\left(\varphi^{\mathcal{A}}\right)=(\delta \varphi)^{\mathcal{B}} \subseteq B^{n k}
$$

In particular, for $n=0$ the map above assigns to each L-sentence σ an L^{*} sentence $\delta \sigma$ such that $\mathcal{A} \models \sigma \Longleftrightarrow \mathcal{B} \models \delta \sigma$.

This proposition is byproduct of what follows, and is good enough for modeltheoretic purposes, but for use in the next Chapter we need to be a bit more precise. In particular, we assume below that the variables are just $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots$. (Of course, Proposition 4.5.4 is not affected by this assumption.)

Let languages L and L^{*} be given. Given any 0-definition $\delta: A \rightarrow B^{k}$ of an L-structure $\mathcal{A}=(A ; \ldots)$ into an L^{*}-structure $\mathcal{B}=(B ; \ldots)$, we shall translate any L-formula about \mathcal{A} into an equivalent L^{*}-formula about \mathcal{B}. But what is meant here by "translate" and "equivalent"? This is what we need to make explicit. For use in decidability issues in the next chapter it is important to do this translation in a way that depends only on L, k, L^{*} and the formulas of L^{*} that define $\delta(A) \subseteq B^{k}$ and the sets $\delta\left(R^{\mathcal{A}}\right)$ and $\delta\left(\operatorname{graph}\left(F^{\mathcal{A}}\right)\right)$ in \mathcal{B}, for $R \in L^{\mathrm{r}}$ and $F \in L^{\mathrm{f}}$, but not on the structures \mathcal{A} and \mathcal{B} or on the map δ that defines \mathcal{A} in \mathcal{B}. It is not hard to do this, but the details are somewhat lengthy. (Fortunately, they are trivial to verify when fully written out.) We now proceed with these details.
We first define a kind of copy L_{k} of the language L; it depends only on L and the natural number k. The symbols of the language L_{k} are the following:
(a) a relation symbol U of arity k,
(b) for each m-ary $R \in L^{\mathrm{r}}$ a relation symbol R_{k} of arity $m k$,
(c) for each n-ary $F \in L^{\mathrm{f}}$ a relation symbol F_{k} of arity $(n+1) k$.

We insist that U is different from s_{k} for each symbol $s \in L$, and that different $s \in L$ give different s_{k}. For each variable $x=\mathrm{v}_{j}$, let x_{1}, \ldots, x_{k} be the variables $\mathrm{v}_{j k+1}, \ldots, \mathrm{v}_{j k+k}$, in this order. Next, we define a $\operatorname{map} \varphi \mapsto \varphi_{k}$ from the set of unnested L-formulas into the set of L_{k}-formulas such that if φ has the form $\varphi\left(x_{1}, \ldots, x_{n}\right)$, then φ_{k} will have the form $\varphi_{k}\left(x_{11}, \ldots, x_{1 k}, \ldots, x_{n 1}, \ldots, x_{n k}\right)$. (Thus if x_{i} happens to be the variable v_{j}, then $x_{i 1}, \ldots, x_{i k}$ are the variables $\mathrm{v}_{j k+1}, \ldots, \mathrm{v}_{j k+k}$, in this order, according to our convention.) The definition of this map $\varphi \mapsto \varphi_{k}$ is by recursion on (unnested) formulas:
(i) if φ is \top, then φ_{k} is \top, and if φ is \perp, then φ_{k} is \perp;
(ii) if φ is $x=y$, then φ_{k} is $x_{1}=y_{1} \wedge \cdots \wedge x_{k}=y_{k}$;
(iii) if φ is $R x_{1} \ldots x_{m}$ with m-ary $R \in L^{\mathrm{r}}$, then φ_{k} is

$$
R_{k} x_{11} \ldots x_{1 k} \ldots x_{m 1} \ldots x_{m k}
$$

(iv) if φ is $F x_{1} \ldots x_{n}=y$ with n-ary $F \in L^{f}$, then φ_{k} is

$$
F_{k} x_{11} \ldots x_{1 k} \ldots x_{n 1} \ldots x_{n k} y_{1} \ldots y_{k}
$$

(v) if φ is $\neg \psi$, then φ_{k} is $\neg \psi_{k}$;
(vi) if φ is $\psi \vee \theta$, then φ_{k} is $\psi_{k} \vee \theta_{k}$;
(vii) if φ is $\psi \wedge \theta$, then φ_{k} is $\psi_{k} \wedge \theta_{k}$;
(viii) if φ is $\exists x \psi$, then φ_{k} is $\exists x_{1} \ldots \exists x_{k}\left(U x_{1} \ldots x_{k} \wedge \psi_{k}\right)$;
(ix) if φ is $\forall x \psi$, then φ_{k} is $\forall x_{1} \ldots \forall x_{k}\left(U x_{1} \ldots x_{k} \rightarrow \psi_{k}\right)$.

In the rest of this section we assume that $\delta: A \rightarrow B^{k}$ is a 0-definition of the L-structure $\mathcal{A}=(A ; \ldots)$ in the L^{*}-structure $\mathcal{B}=(B ; \ldots)$. We arrange that L^{*} and L_{k} are disjoint, and form the language $L_{k}^{*}:=L^{*} \cup L_{k}$. We now expand \mathcal{B} to an L_{k}^{*}-structure \mathcal{B}_{k} as follows: interpret U as $\delta(A)$, and R_{k} for m-ary $R \in L^{\mathrm{r}}$ as $\delta\left(R^{\mathcal{A}}\right)$, and F_{k} for n-ary $F \in L^{\mathrm{f}}$ as $\delta(\operatorname{graph}(F))$. A straigtforward induction gives:

Lemma 4.5.5. For any unnested L-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $a_{1}, \ldots, a_{n} \in A$,

$$
\mathcal{A} \models \varphi\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow \mathcal{B}_{k} \models \varphi_{k}\left(\delta\left(a_{1}\right), \ldots, \delta\left(a_{n}\right)\right)
$$

It is clear that \mathcal{B}_{k} is a definitional expansion of \mathcal{B}. Explicitly, let $U^{*}\left(v_{1}, \ldots, v_{k}\right)$ be an L^{*}-formula that defines $\delta(A)$ in \mathcal{B}; for each m-ary $R \in L^{\mathrm{r}}$, let $R^{*}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{m k}\right)$ be an L^{*}-formula that defines $\delta\left(R^{\mathcal{A}}\right)$ in \mathcal{B}; for each n-ary $F \in L^{\mathrm{r}}$, let

$$
F^{*}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{(n+1) k}\right)
$$

be an L^{*}-formula that defines $\delta\left(\operatorname{graph}\left(F^{\mathcal{A}}\right)\right)$ in \mathcal{B}. Then in \mathcal{B}_{k} the L_{k}-formula $U \mathrm{v}_{1} \ldots \mathrm{v}_{k}$ is equivalent to the L^{*}-formula $U^{*}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right)$, for m-ary $R \in L^{\mathrm{r}}$ the L_{k}-formula $R_{k} \mathrm{v}_{1} \ldots \mathrm{v}_{m k}$ is equivalent to the L^{*}-formula $R^{*}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{m k}\right)$, and for n-ary $F \in L^{\mathrm{f}}$, the L_{k}-formula $F_{k} \mathrm{v}_{1} \ldots \mathrm{v}_{(n+1) k}$ is equivalent to the L^{*}-formula $F^{*}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{(n+1) k}\right)$. So the defining axiom for U is

$$
\forall \mathrm{v}_{1} \ldots \forall \mathrm{v}_{k}\left(U \mathrm{v}_{1} \ldots \mathrm{v}_{k} \longleftrightarrow U^{*}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right)\right)
$$

for m-ary $R \in L^{\mathrm{r}}$ the defining axiom for R_{k} is

$$
\forall \mathrm{v}_{1} \ldots \forall \mathrm{v}_{m k}\left(R_{k} \mathrm{v}_{1} \ldots \mathrm{v}_{m k} \longleftrightarrow R^{*}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{m k}\right)\right)
$$

and for n-ary $F \in L^{\mathrm{f}}$ the defining axiom for F_{k} is

$$
\forall \mathrm{v}_{1} \ldots \forall \mathrm{v}_{(n+1) k}\left(F_{k} \mathrm{v}_{1} \ldots \mathrm{v}_{(n+1) k} \longleftrightarrow R^{*}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{(n+1) k}\right)\right)
$$

Let $\operatorname{Def}(\delta)$ be the set of L_{k}^{*}-sentences whose members are the defining axioms for U and the R_{k} and F_{k} described above. These defining axioms are true in \mathcal{B}_{k}, and define \mathcal{B}_{k} as an expansion of \mathcal{B}.
Let $\varphi=\varphi\left(x_{1}, \ldots, x_{n}\right)$ be any L-formula. Now φ is equivalent to an unnested L-formula, so Lemma 4.5.5 gives an L_{k}-formula

$$
\varphi_{k}=\varphi_{k}\left(x_{11}, \ldots, x_{1 k}, \ldots, x_{n 1}, \ldots, x_{n k}\right)
$$

such that for all $a_{1}, \ldots, a_{n} \in A$,

$$
\mathcal{A} \models \varphi\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow \mathcal{B}_{k} \models \varphi_{k}\left(\delta\left(a_{1}\right), \ldots, \delta\left(a_{n}\right)\right)
$$

Treating φ_{k} as an L_{k}^{*}-formula we then obtain from Lemma 4.5.3 an L^{*}-formula

$$
\delta \varphi=(\delta \varphi)\left(x_{11}, \ldots, x_{1 k}, \ldots, x_{n 1}, \ldots, x_{n k}\right)
$$

such that $\operatorname{Def}(\delta) \vdash \varphi_{k} \longleftrightarrow \delta \varphi$, and thus for all $a_{1}, \ldots, a_{n} \in A$,

$$
\mathcal{A}=\varphi\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow \mathcal{B} \models(\delta \varphi)\left(\delta\left(a_{1}\right), \ldots, \delta\left(a_{n}\right)\right)
$$

Moreover, the $\operatorname{map} \varphi \mapsto \varphi_{k}$ depends only on L, k, and the map $\varphi \mapsto \delta \varphi$ depends only on $L, k, L^{*}, \operatorname{Def}(\delta)\left(\right.$ not on \mathcal{A}, \mathcal{B}, or $\left.\delta: A \rightarrow B^{k}\right)$. Let us single out the case of sentences, and summarize what we have as follows:

Lemma 4.5.6. To each L-sentence σ is assigned an L_{k}-sentence σ_{k} such that $\mathcal{A} \vDash \sigma \Longleftrightarrow \mathcal{B}_{k} \models \sigma_{k}$, and an L^{*}-sentence $\delta \sigma$ such that $\operatorname{Def}(\delta) \vdash \sigma_{k} \longleftrightarrow \delta \sigma$. Since $\mathcal{B}_{k} \models \operatorname{Def}(\delta)$, this gives $\mathcal{A} \models \sigma \Longleftrightarrow \mathcal{B} \models \delta \sigma$, for each L-sentence σ.

We shall also need that \mathcal{B}_{k} satisfies certain L_{k}-sentences that express:
(i) the fact that $U^{\mathcal{B}_{k}} \subseteq B^{k}$ is nonempty;
(ii) for each m-ary $R \in L^{\mathrm{r}}$ the fact that $R_{k}^{\mathcal{B}_{k}} \subseteq\left(U^{\mathcal{B}_{k}}\right)^{m}$;
(iii) for each n-ary $F \in L^{\mathrm{f}}$ the fact that the relation $F_{k}^{\mathcal{B}_{k}} \subseteq B^{(n+1) k}$ is the graph of a function $\left(U^{\mathcal{B}_{k}}\right)^{n} \rightarrow U^{\mathcal{B}_{k}}$.

For (i), take the sentence $\exists \mathrm{v}_{1} \ldots \exists \mathrm{v}_{k} U \mathrm{v}_{1} \ldots \mathrm{v}_{k}$. To express (ii), take

$$
\forall \mathrm{v}_{1} \ldots \forall \mathrm{v}_{m k}\left(R_{k} \mathrm{v}_{1} \ldots \mathrm{v}_{m k} \rightarrow U \mathrm{v}_{1} \ldots \mathrm{v}_{k} \wedge \ldots \wedge U \mathrm{v}_{(m-1) k+1} \ldots \mathrm{v}_{m k}\right)
$$

We leave it to the reader to construct the sentences expressing (iii). Note that (i), (ii), and (iii) yield a set $\Delta(L, k)$ of L_{k}-sentences that depends only on L, k and not on \mathcal{A}, \mathcal{B} or $\delta: A \rightarrow B^{k}$. This will play a role in the next Chapter via the following Lemma.

Lemma 4.5.7. Let Σ^{*} be a set of L^{*}-sentences. Define $\Sigma:=$ set of L-sentences σ such that $\Sigma^{*} \cup \operatorname{Def}(\delta) \cup \Delta(L, k) \vdash \sigma_{k}$. Then for all L-sentences σ,

$$
\Sigma \vdash \sigma \Longleftrightarrow \Sigma^{*} \cup \operatorname{Def}(\delta) \cup \Delta(L, k) \vdash \sigma_{k} .
$$

Proof. The direction \Longleftarrow holds by the definition of Σ. For the converse, let σ is an L-sentence such that $\Sigma^{*} \cup \operatorname{Def}(\delta) \cup \Delta(L, k) \nvdash \sigma_{k}$; it is enough to show that $\Sigma \nvdash \sigma$. The Completeness Theorem provides an L_{k}^{*}-structure $\mathcal{D}=(D ; \ldots)$ with

$$
\mathcal{D} \equiv \Sigma^{*} \cup \operatorname{Def}(\delta) \cup \Delta(L, k) \cup\left\{\neg \sigma_{k}\right\} .
$$

Then we define an L-structure \mathcal{C} as follows: the underlying set C of \mathcal{C} is given by $C=U^{\mathcal{D}} \subseteq D^{k}$, the interpretation in \mathcal{C} of an m-ary $R \in L^{\mathrm{r}}$ is the set $R_{k}^{\mathcal{D}}$ viewed as an m-ary relation on C, and the interpretation in \mathcal{C} of an n-ary $F \in L^{\mathrm{f}}$ is the function $C^{n} \rightarrow C$ whose graph is $F_{k}^{\mathcal{D}}$ when the latter is viewed as an $(n+1)$-ary relation on C. By construction the inclusion map $C \hookrightarrow D^{k}$ is a 0 -definition of \mathcal{C} in the L^{*}-reduct of \mathcal{D}, and so for any L-sentence ρ we have $\mathcal{C} \models \rho \Longleftrightarrow \mathcal{D} \models \rho_{k}$. It follows that $\mathcal{C} \models \Sigma \cup\{\neg \sigma\}$, and so $\Sigma \nvdash \sigma$, as promised.

Chapter 5

Computability, Decidability, and Incompleteness

In this chapter we prove Gödel's famous Incompleteness Theorem. Consider the structure $\mathfrak{N}:=(\mathbf{N} ; 0, S,+, \cdot,<)$, where $S: \mathbf{N} \rightarrow \mathbf{N}$ is the successor function. A simple form of the incompleteness theorem is as follows.

Let Σ be a computable set of sentences in the language of \mathfrak{N} and true in \mathfrak{N}. Then there exists a sentence σ in that language such that $\mathfrak{N} \models \sigma$, but $\Sigma \nvdash \sigma$.

In other words, no computable set of axioms in the language of \mathfrak{N} and true in \mathfrak{N} can be complete, hence the name Incompleteness Theorem. ${ }^{1}$ The only unexplained terminology here is "computable." Intuitively, " Σ is computable" means that there is an algorithm to recognize whether any given sentence in the language of \mathfrak{N} belongs to Σ. (It seems reasonable to require this of an axiom system for \mathfrak{N}.) Thus we begin this chapter with developing the notion of computability. The interest of this notion is tied to the Church-Turing Thesis as explained in Section 5.2, and goes far beyond incompleteness. For example, computability plays a role in combinatorial group theory (Higman's Theorem) and in certain diophantine questions (Hilbert's 10th problem), not to mention its role in the ideological underpinnings of computer science.

5.1 Computable Functions

First some notation. We let μx (..x..) denote the least $x \in \mathbf{N}$ for which .. $x .$. holds. Here .. x.. is some condition on natural numbers x. For example $\mu x\left(x^{2}>7\right)=3$. We will only use this notation when the meaning of ..x.. is clear, and the set $\{x \in \mathbf{N}: . . x .$.$\} is non-empty. For a \in \mathbf{N}$ we also let $\mu x_{<a}(. . x .$.$) be the least$ $x<a$ in \mathbf{N} such that .. x.. holds if there is such an x, and if there is no such x we put $\mu x_{<a}(. . x .):.=a$. For example, $\mu x_{<4}\left(x^{2}>3\right)=2$ and $\mu x_{<2}(x>5)=2$.

[^8]Definition. For $R \subseteq \mathbf{N}^{n}$, we define $\chi_{R}: \mathbf{N}^{n} \rightarrow \mathbf{N}$ by $\chi_{R}(a)= \begin{cases}1 & \text { if } a \in R, \\ 0 & \text { if } a \notin R .\end{cases}$
Think of such R as an n-ary relation on \mathbf{N}. We call χ_{R} the characteristic function of R, and often write $R\left(a_{1}, \ldots, a_{n}\right)$ instead of $\left(a_{1}, \ldots, a_{n}\right) \in R$.

Example. $\chi_{<}(m, n)=1$ iff $m<n$, and $\chi_{<}(m, n)=0$ iff $m \geq n$.
Definition. For $i=1, \ldots, n$ we define $I_{i}^{n}: \mathbf{N}^{n} \rightarrow \mathbf{N}$ by $I_{i}^{n}\left(a_{1}, \ldots, a_{n}\right)=a_{i}$. These functions are called coordinate functions.

Definition. The computable functions (or recursive functions) are the functions from \mathbf{N}^{n} to \mathbf{N} (for $n=0,1,2, \ldots$) obtained by inductively applying the following rules:
$(\mathrm{R} 1)+: \mathbf{N}^{2} \rightarrow \mathbf{N}, \cdot: \mathbf{N}^{2} \rightarrow \mathbf{N}, \chi_{\leq}: \mathbf{N}^{2} \rightarrow \mathbf{N}$, and the coordinate functions I_{i}^{n} (for each n and $i=1, \ldots, n$) are computable.
(R2) If $G: \mathbf{N}^{m} \rightarrow \mathbf{N}$ is computable and $H_{1}, \ldots, H_{m}: \mathbf{N}^{n} \rightarrow \mathbf{N}$ are computable, then so is the function $F=G\left(H_{1}, \ldots, H_{m}\right): \mathbf{N}^{n} \rightarrow \mathbf{N}$ defined by

$$
F(a)=G\left(H_{1}(a), \ldots, H_{m}(a)\right)
$$

(R3) If $G: \mathbf{N}^{n+1} \rightarrow \mathbf{N}$ is computable, and for all $a \in \mathbf{N}^{n}$ there exists $x \in \mathbf{N}$ such that $G(a, x)=0$, then the function $F: \mathbf{N}^{n} \rightarrow \mathbf{N}$ given by

$$
F(a)=\mu x(G(a, x)=0)
$$

is computable.
A relation $R \subseteq \mathbf{N}^{n}$ is said to be computable (or recursive) if its characteristic function $\chi_{R}: \mathbf{N}^{n} \longrightarrow \mathbf{N}$ is computable.

Example. If $F: \mathbf{N}^{3} \rightarrow \mathbf{N}$ and $G: \mathbf{N}^{2} \rightarrow \mathbf{N}$ are computable, then so is the function $H: \mathbf{N}^{4} \rightarrow \mathbf{N}$ defined by $H\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=F\left(G\left(x_{1}, x_{4}\right), x_{2}, x_{4}\right)$. This follows from (R2) by noting that $H(x)=F\left(G\left(I_{1}^{4}(x), I_{4}^{4}(x)\right), I_{2}^{4}(x), I_{4}^{4}(x)\right)$ where $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. We shall use this device from now on in many proofs, but only tacitly. (The reader should of course notice when we do so.)

From (R1), (R2) and (R3) we derive further rules for obtaining computable functions. This is mostly an exercise in programming.

Lemma 5.1.1. Let $H_{1}, \ldots, H_{m}: \mathbf{N}^{n} \rightarrow \mathbf{N}$ and $R \subseteq \mathbf{N}^{m}$ be computable. Then $R\left(H_{1}, \ldots, H_{k}\right) \subseteq \mathbf{N}^{n}$ is computable, where for $a \in \mathbf{N}^{n}$ we put

$$
R\left(H_{1}, \ldots, H_{m}\right)(a) \Longleftrightarrow R\left(H_{1}(a), \ldots, H_{m}(a)\right)
$$

Proof. Observe that $\chi_{R\left(H_{1}, \ldots, H_{m}\right)}=\chi_{R}\left(H_{1}, \ldots, H_{m}\right)$. Now apply (R2).
Lemma 5.1.2. The functions $\chi \geq$ and $\chi=$ on \mathbf{N}^{2} are computable.

Proof. The function χ_{\geq}is computable because

$$
\chi_{\geq}(m, n)=\chi_{\leq}(n, m)=\chi_{\leq}\left(I_{2}^{2}(m, n), I_{1}^{2}(m, n)\right)
$$

which enables us to apply (R1) and (R2). Similarly, $\chi=$ is computable:

$$
\chi_{=}(m, n)=\chi_{\leq}(m, n) \cdot \chi_{\geq}(m, n)
$$

For $k \in \mathbf{N}$ we define the constant function $c_{k}^{n}: \mathbf{N}^{n} \rightarrow \mathbf{N}$ by $c_{k}^{n}(a)=k$.
Lemma 5.1.3. Every constant function c_{k}^{n} is computable.
Proof. By induction on k. For $k=0$ we use

$$
c_{0}^{n}(a)=\mu x\left(I_{n+1}^{n+1}(a, x)=0\right)
$$

For the step from k to $k+1$, observe that

$$
c_{k+1}^{n}(a)=\mu x\left(c_{k}^{n}(a)<x\right)=\mu x\left(\chi \geq\left(c_{k}^{n+1}(a, x), I_{n+1}^{n+1}(a, x)\right)=0\right)
$$

for $a \in \mathbf{N}^{n}$.
Let P, Q be n-ary relations on \mathbf{N}. Then we can form the n-ary relations

$$
\begin{aligned}
\neg P & :=\mathbf{N}^{n} \backslash P, P \vee Q:=P \cup Q, P \wedge Q:=P \cap Q \\
P \rightarrow Q & :=(\neg P) \vee Q, P \leftrightarrow Q:=(P \rightarrow Q) \wedge(Q \rightarrow P)
\end{aligned}
$$

on \mathbf{N}.
Lemma 5.1.4. Suppose P, Q are computable. Then $\neg P, P \vee Q, P \wedge Q, P \rightarrow Q$ and $P \leftrightarrow Q$ are also computable.
Proof. Let $a \in \mathbf{N}^{n}$. Then $\neg P(a)$ iff $\chi_{P}(a)=0$ iff $\chi_{P}(a)=c_{0}^{n}(a)$, so $\chi_{\neg P}(a)=$ $\chi_{=}\left(\chi_{P}(a), c_{0}^{n}(a)\right)$. Hence $\neg P$ is computable by (R2) and Lemma 5.1.2. Next, the relation $P \wedge Q$ is computable since $\chi_{P \wedge Q}=\chi_{P} \cdot \chi_{Q}$. By De Morgan's Law, $P \vee Q=\neg(\neg P \wedge \neg Q)$. Thus $P \vee Q$ is computable. The rest is clear.

Lemma 5.1.5. The binary relations $<, \leq,=,>, \geq, \neq$ on \mathbf{N} are computable.
Proof. The relations \geq, \leq and $=$ have already been taken care of by Lemma 5.1.2 and (R1). The remaining relations are complements of these three, so by Lemma 5.1.4 they are also computable.

Lemma 5.1.6. (Definition by Cases) Let $R_{1}, \ldots, R_{k} \subseteq \mathbf{N}^{n}$ be computable such that for each $a \in \mathbf{N}^{n}$ exactly one of $R_{1}(a), \ldots, R_{k}(a)$ holds, and suppose that $G_{1}, \ldots, G_{k}: \mathbf{N}^{n} \rightarrow \mathbf{N}$ are computable. Then $G: \mathbf{N}^{n} \rightarrow \mathbf{N}$ given by

$$
G(a)=\left\{\begin{array}{cc}
G_{1}(a) & \text { if } R_{1}(a) \\
\vdots & \vdots \\
G_{k}(a) & \text { if } R_{k}(a)
\end{array}\right.
$$

is computable.

Proof. This follows from $G=G_{1} \cdot \chi_{R_{1}}+\cdots+G_{k} \cdot \chi_{R_{k}}$.
Lemma 5.1.7. (Definition by Cases) Let $R_{1}, \ldots, R_{k} \subseteq \mathbf{N}^{n}$ be computable such that for each $a \in \mathbf{N}^{n}$ exactly one of $R_{1}(a), \ldots, R_{k}(a)$ holds. Let $P_{1}, \ldots, P_{k} \subseteq \mathbf{N}^{n}$ be computable. Then the relation $P \subseteq \mathbf{N}^{n}$ defined by

$$
P(a) \Longleftrightarrow\left\{\begin{array}{cc}
P_{1}(a) & \text { if } R_{1}(a) \\
\vdots & \vdots \\
P_{k}(a) & \text { if } R_{k}(a)
\end{array}\right.
$$

is computable.
Proof. Use that $P=\left(P_{1} \wedge R_{1}\right) \vee \cdots \vee\left(P_{k} \wedge R_{k}\right)$.
Lemma 5.1.8. Let $R \subseteq \mathbf{N}^{n+1}$ be computable such that for all $a \in \mathbf{N}^{n}$ there exists $x \in \mathbf{N}$ with $(a, x) \in R$. Then the function $F: \mathbf{N}^{n} \rightarrow \mathbf{N}$ given by

$$
F(a)=\mu x R(a, x)
$$

is computable.
Proof. Note that $F(a)=\mu x\left(\chi_{\neg R}(a, x)=0\right)$ and apply (R3).
Here is a nice consequence of 5.1.5 and 5.1.8.
Lemma 5.1.9. Let $F: \mathbf{N}^{n} \rightarrow \mathbf{N}$. Then F is computable if and only if its graph (a subset of \mathbf{N}^{n+1}) is computable.

Proof. Let $R \subseteq \mathbf{N}^{n+1}$ be the graph of F. Then for all $a \in \mathbf{N}^{n}$ and $b \in \mathbf{N}$,

$$
R(a, b) \Longleftrightarrow F(a)=b, \quad F(a)=\mu x R(a, x)
$$

from which the lemma follows immediately.
Lemma 5.1.10. If $R \subseteq \mathbf{N}^{n+1}$ is computable, then the function $F_{R}: \mathbf{N}^{n+1} \rightarrow \mathbf{N}$ defined by $F_{R}(a, y)=\mu x_{<y} R(a, x)$ is computable.

Proof. Use that $F_{R}(a, y)=\mu x(R(a, x)$ or $x=y)$.
Some notation: below we use the bold symbol \exists as shorthand for "there exists a natural number"; likewise, we use symbol \forall to abbreviate "for all natural numbers." These abbreviation symbols should not be confused with the logical symbols \exists and \forall.

Lemma 5.1.11. Suppose $R \subseteq \mathbf{N}^{n+1}$ is computable. Let $P, Q \subseteq \mathbf{N}^{n+1}$ be the relations defined by

$$
\begin{aligned}
P(a, y) & \Longleftrightarrow \exists x_{<y} R(a, x) \\
Q(a, y) & \Longleftrightarrow \forall x_{<y} R(a, x)
\end{aligned}
$$

for $(a, y)=\left(a_{1}, \ldots, a_{n}, y\right) \in \mathbf{N}^{n+1}$. Then P and Q are computable.

Proof. Using the notation and results from Lemma 5.1.10 we note that $P(a, y)$ iff $F_{R}(a, y)<y$. Hence $\chi_{P}(a, y)=\chi_{<}\left(F_{R}(a, y), y\right)$. For Q, note that $\neg Q(a, y)$ iff $\exists x_{<y} \neg R(a, x)$.

The reader should derive from Lemma 5.1.11 a variant that is often used:
Corollary 5.1.12. Suppose $R \subseteq \mathbf{N}^{n+2}$ is computable. Let $P, Q \subseteq \mathbf{N}^{n+1}$ be the relations defined by

$$
\begin{aligned}
& P(a, y) \Longleftrightarrow \exists x_{<y} R(a, x, y) \\
& Q(a, y) \Longleftrightarrow \forall x_{<y} R(a, x, y)
\end{aligned}
$$

for $(a, y)=\left(a_{1}, \ldots, a_{n}, y\right) \in \mathbf{N}^{n+1}$. Then P and Q are computable.
Lemma 5.1.13. The function $\dot{-}: \mathbf{N}^{2} \rightarrow \mathbf{N}$ defined by $a \dot{-} b= \begin{cases}a-b & \text { if } a \geq b, \\ 0 & \text { if } a<b\end{cases}$ is computable.

Proof. Use that $a \dot{-} b=\mu x(b+x=a$ or $a<b)$.
The results above imply easily that many familiar functions are computable. But is the exponential function $n \mapsto 2^{n}$ computable? It certainly is in the intuitive sense: we know how to compute (in principle) its value at any given argument. It is not that obvious from what we have proved so far that it is computable in our precise sense. We now develop some coding tricks due to Gödel that enable us to prove routinely that functions like 2^{x} are computable according to our definition of "computable function".

Definition. Define the function Pair : $\mathbf{N}^{2} \rightarrow \mathbf{N}$ by

$$
\operatorname{Pair}(x, y):=\frac{(x+y)(x+y+1)}{2}+x
$$

We call Pair the pairing function.
Lemma 5.1.14. The function Pair is bijective and computable.
Proof. Exercise.
Definition. Since Pair is a bijection we can define functions

$$
\text { Left, Right : } \mathbf{N} \rightarrow \mathbf{N}
$$

by

$$
\operatorname{Pair}(x, y)=a \Longleftrightarrow \operatorname{Left}(a)=x \text { and } \operatorname{Right}(a)=y
$$

The reader should check that $\operatorname{Left}(a), \operatorname{Right}(a) \leq a$ for $a \in \mathbf{N}$, and $\operatorname{Left}(a)<a$ if $0<a \in \mathbf{N}$.

Lemma 5.1.15. The functions Left and Right are computable.

Proof. Use 5.1.9 in combination with

$$
\begin{aligned}
\operatorname{Left}(a) & =\mu x\left(\exists y_{<a+1} \operatorname{Pair}(x, y)=a\right), \\
\operatorname{Right}(a) & =\mu y\left(\exists x_{<a+1} \operatorname{Pair}(x, y)=a\right) .
\end{aligned}
$$

For $a, b, c \in \mathbf{Z}$ we have (by definition): $a \equiv b \bmod c \Longleftrightarrow a-b \in c \mathbf{Z}$.
Lemma 5.1.16. The ternary relation $a \equiv b \bmod c$ on \mathbf{N} is computable.
Proof. Use that for $a, b, c \in \mathbf{N}$ we have
$a \equiv b \bmod c \Longleftrightarrow\left(\exists x_{<a+1} a=x \cdot c+b\right.$ or $\left.\exists x_{<b+1} b=x \cdot c+a\right)$.
We can now introduce Gödel's function $\beta: \mathbf{N}^{2} \rightarrow \mathbf{N}$.
Definition. For $a, i \in \mathbf{N}$ we let $\beta(a, i)$ be the remainder of $\operatorname{Left}(a)$ upon division by $1+(i+1) \operatorname{Right}(a)$, that is,

$$
\beta(a, i):=\mu x(x \equiv \operatorname{Left}(a) \quad \bmod 1+(i+1) \operatorname{Right}(a)) .
$$

Proposition 5.1.17. The function β is computable, and $\beta(a, i) \leq a-1$ for all $a, i \in \mathbf{N}$. For any $a_{0}, \ldots, a_{n} \in \mathbf{N}$ there exists $a \in \mathbf{N}$ such that

$$
\beta(a, 0)=a_{0}, \ldots, \beta(a, n)=a_{n} .
$$

Proof. The computability of β is clear from earlier results. We have

$$
\beta(a, i) \leq \operatorname{Left}(a) \leq a \dot{-} 1 .
$$

Let $a_{0}, \ldots, a_{n} \in \mathbf{N}$. Take $N \in \mathbf{N}$ such that $a_{i} \leq N$ for all $i \leq n$ and N is a multiple of every prime number $\leq n$. We claim that then

$$
1+N, 1+2 N, \ldots, 1+n N, 1+(n+1) N
$$

are pairwise relatively prime. To see this, suppose p is a prime number such that $p \mid 1+i N$ and $p \mid 1+j N(1 \leq i<j \leq n+1)$; then p divides their difference $(j-i) N$, but $p \equiv 1 \bmod N$, so p does not divide N, hence $p \mid j-i \leq n$. But all prime numbers $\leq n$ divide N, and we have a contradiction.

By the Chinese Remainder Theorem there exists an $M \in \mathbf{N}$ such that

$$
\begin{aligned}
M & \equiv a_{0} \bmod 1+N \\
M & \equiv a_{1} \bmod 1+2 N \\
& \vdots \\
M & \equiv a_{n} \bmod 1+(n+1) N .
\end{aligned}
$$

Put $a:=\operatorname{Pair}(M, N) ;$ then $\operatorname{Left}(a)=M$ and $\operatorname{Right}(a)=N$, and thus $\beta(a, i)=$ a_{i} as required.

Remark. Proposition 5.1.17 shows that we can use β to encode a sequence of numbers a_{0}, \ldots, a_{n} in terms of a single number a. We use this as follows to show that the function $n \mapsto 2^{n}$ is computable.

If a_{0}, \ldots, a_{n} are natural numbers such that $a_{0}=1$, and $a_{i+1}=2 a_{i}$ for all $i<n$, then necessarily $a_{n}=2^{n}$. Hence by Proposition 5.1.17 we have $\beta(a, n)=2^{n}$ where

$$
a:=\mu x\left(\beta(x, 0)=1 \text { and } \forall i_{<n} \beta(x, i+1)=2 \beta(x, i)\right),
$$

that is,

$$
2^{n}=\beta(a, n)=\beta\left(\mu x\left(\beta(x, 0)=1 \text { and } \forall i_{<n} \beta(x, i+1)=2 \beta(x, i)\right), n\right)
$$

It follows that $n \mapsto 2^{n}$ is computable.
The above suggests a general method, which we develop next. To each sequence $\left(a_{1}, \ldots, a_{n}\right)$ of natural numbers we assign a sequence number, denoted $\left\langle a_{1}, \ldots, a_{n}\right\rangle$, and defined to be the least natural number a such that $\beta(a, 0)=n$ (the length of the sequence) and $\beta(a, i)=a_{i}$ for $i=1, \ldots, n$. For $n=0$ this gives $\rangle=0$, where \rangle is the sequence number of the empty sequence. We define the length function $\mathrm{lh}: \mathbf{N} \longrightarrow \mathbf{N}$ by $\operatorname{lh}(a)=\beta(a, 0)$, so lh is computable. Observe that $\operatorname{lh}\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)=n$.

Put $(a)_{i}:=\beta(a, i+1)$. The function $(a, i) \mapsto(a)_{i}: \mathbf{N}^{2} \longrightarrow \mathbf{N}$ is computable, and $\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)_{i}=a_{i+1}$ for $i<n$. Finally, let Seq $\subseteq \mathbf{N}$ denote the set of sequence numbers. The set Seq is computable since

$$
a \in \operatorname{Seq} \Longleftrightarrow \forall x_{<a}\left(\operatorname{lh}(x) \neq \operatorname{lh}(a) \text { or } \exists i_{<\operatorname{lh}(a)}(x)_{i} \neq(a)_{i}\right)
$$

Lemma 5.1.18. For any n, the function $\left(a_{1}, \ldots, a_{n}\right) \mapsto\left\langle a_{1}, \ldots, a_{n}\right\rangle: \mathbf{N}^{n} \rightarrow \mathbf{N}$ is computable, and $a_{i}<\left\langle a_{1}, \ldots, a_{n}\right\rangle$ for $\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{N}^{n}$ and $i=1, \ldots, n$.

Proof. Use $\left\langle a_{1}, \ldots, a_{n}\right\rangle=\mu a\left(\beta(a, 0)=n, \beta(a, 1)=a_{1}, \ldots, \beta(a, n)=a_{n}\right)$, and apply Lemmas 5.1.8, 5.1.4 and 5.1.17.

Lemma 5.1.19. We have computable binary operations In: $\mathbf{N}^{2} \rightarrow \mathbf{N}$ and $*: \mathbf{N}^{2} \rightarrow \mathbf{N}$ such that for all $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n} \in \mathbf{N}$,

$$
\begin{aligned}
\operatorname{In}\left(\left\langle a_{1}, \ldots, a_{m}\right\rangle, i\right) & =\left\langle a_{1}, \ldots, a_{i}\right\rangle \text { for } i \leq m \\
\left\langle a_{1}, \ldots, a_{m}\right\rangle *\left\langle b_{1}, \ldots, b_{n}\right\rangle & =\left\langle a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right\rangle .
\end{aligned}
$$

Proof. Such functions are obtained by defining

$$
\begin{aligned}
\operatorname{In}(a, i) & =\mu x\left(\ln (x)=i \text { and } \forall j_{<i}(x)_{j}=(a)_{j}\right) \\
a * b & =\mu x\left(\ln (x)=\operatorname{lh}(a)+\operatorname{lh}(b) \text { and } \forall i_{<\operatorname{lh}(a)}(x)_{i}=(a)_{i}\right. \\
& \left.\quad \text { and } \forall j_{<\operatorname{lh}(b)}(x)_{\operatorname{lh}(a)+j}=(b)_{j}\right)
\end{aligned}
$$

Definition. For $F: \mathbf{N}^{n+1} \rightarrow \mathbf{N}$, let $\bar{F}: \mathbf{N}^{n+1} \rightarrow \mathbf{N}$ be given by

$$
\bar{F}(a, b)=\langle F(a, 0), \ldots, F(a, b-1)\rangle \quad\left(a \in \mathbf{N}^{n}, b \in \mathbf{N}\right)
$$

Note that $\bar{F}(a, 0)=\langle \rangle=0$.
Lemma 5.1.20. Let $F: \mathbf{N}^{n+1} \rightarrow \mathbf{N}$. Then F is computable if and only if \bar{F} is computable.

Proof. Suppose F is computable. Then \bar{F} is computable since

$$
\bar{F}(a, b)=\mu x\left(\operatorname{lh}(x)=b \text { and } \forall i_{<b}(x)_{i}=F(a, i)\right) .
$$

In the other direction, suppose \bar{F} is computable. Then F is computable since $F(a, b)=(\bar{F}(a, b+1))_{b}$.

Given $G: \mathbf{N}^{n+2} \rightarrow \mathbf{N}$ there is a unique function $F: \mathbf{N}^{n+1} \rightarrow \mathbf{N}$ such that

$$
F(a, b)=G(a, b, \bar{F}(a, b)) \quad\left(a \in \mathbf{N}^{n}, b \in \mathbf{N}\right)
$$

This will be clear if we express the requirement on F as follows:

$$
F(a, 0)=G(a, 0,0), \quad F(a, b+1)=G(a, b+1,\langle F(a, 0), \ldots, F(a, b)\rangle)
$$

The next result is important because it allows us to introduce computable functions by recursion on its values at smaller arguments.

Proposition 5.1.21. Let G and F be as above and suppose G is computable. Then F is computable.

Proof. Note that

$$
\bar{F}(a, b)=\mu x\left(\operatorname{Seq}(x) \text { and } \operatorname{lh}(x)=b \text { and } \forall i_{<b}(x)_{i}=G(a, i, \operatorname{In}(x, i))\right)
$$

for all $a \in \mathbf{N}^{n}$ and $b \in \mathbf{N}$. It follows that \bar{F} is computable, and thus by the previous lemma F is computable.

Definition. Let $A: \mathbf{N}^{n} \rightarrow \mathbf{N}$ and $B: \mathbf{N}^{n+2} \rightarrow \mathbf{N}$ be given. Let a range over \mathbf{N}^{n}, and define the function $F: \mathbf{N}^{n+1} \rightarrow \mathbf{N}$ by

$$
\begin{aligned}
F(a, 0) & =A(a) \\
F(a, b+1) & =B(a, b, F(a, b))
\end{aligned}
$$

We say that F is obtained from A and B by primitive recursion.
Proposition 5.1.22. Suppose A, B, and F are as above, and A and B are computable. Then F is computable.

Proof. Define $G: \mathbf{N}^{n+2} \rightarrow \mathbf{N}$ by

$$
G(a, b, c)= \begin{cases}A(a) & \text { if } b=0 \\ B\left(a, b-1,(c)_{b-1}\right) & \text { if } b>0\end{cases}
$$

Clearly, G is computable. We claim that

$$
F(a, b)=G(a, b, \bar{F}(a, b))
$$

This claim yields the computability of F, by Proposition 5.1.21. We have

$$
\begin{aligned}
F(a, 0) & =A(a)=G(a, 0, \bar{F}(a, 0)), \quad \text { and } \\
F(a, b+1) & =B(a, b, F(a, b))=B\left(a, b,(\bar{F}(a, b+1))_{b}\right) \\
& =G(a, b+1, \bar{F}(a, b+1))
\end{aligned}
$$

The claim follows.
Proposition 5.1.21 will be applied over and over again in the later section on Gödel numbering, but in combination with definitions by cases. As a simple example of such an application, let $G: \mathbf{N} \rightarrow \mathbf{N}$ and $H: \mathbf{N}^{2} \rightarrow \mathbf{N}$ be computable. There is clearly a unique function $F: \mathbf{N}^{2} \rightarrow \mathbf{N}$ such that for all $a, b \in \mathbf{N}$

$$
F(a, b)= \begin{cases}F(a, G(b)) & \text { if } G(b)<b \\ H(a, b) & \text { otherwise }\end{cases}
$$

In particular $F(a, 0)=H(a, 0)$. We claim that F is computable.
According to Proposition 5.1.21 this claim will follow if we can specify a computable function $K: \mathbf{N}^{3} \rightarrow \mathbf{N}$ such that $F(a, b)=K(a, b, \bar{F}(a, b))$ for all $a, b \in \mathbf{N}$. Such a function K is given by

$$
K(a, b, c)= \begin{cases}(c)_{G(b)} & \text { if } G(b)<b \\ H(a, b) & \text { otherwise }\end{cases}
$$

Exercises.

(1) The set of prime numbers is computable.
(2) The Fibonacci numbers are the natural numbers F_{n} defined recursively by $F_{0}=0$, $F_{1}=1$, and $F_{n+2}=F_{n+1}+F_{n}$. The function $n \mapsto F_{n}: \mathbf{N} \rightarrow \mathbf{N}$ is computable.
(3) If $f_{1}, \ldots, f_{n}: \mathbf{N}^{m} \rightarrow \mathbf{N}$ are computable and $X \subseteq \mathbf{N}^{n}$ is computable, then $f^{-1}(X) \subseteq \mathbf{N}^{m}$ is computable, where $f:=\left(f_{1}, \ldots, f_{n}\right): \mathbf{N}^{m} \rightarrow \mathbf{N}^{n}$.
(4) If $f: \mathbf{N} \rightarrow \mathbf{N}$ is computable and surjective, then there is a computable function $g: \mathbf{N} \rightarrow \mathbf{N}$ such that $f \circ g=\mathrm{id}_{\mathbf{N}}$.
(5) If $f: \mathbf{N} \rightarrow \mathbf{N}$ is computable and strictly increasing, then $f(\mathbf{N}) \subseteq \mathbf{N}$ is computable.
(6) All computable functions and relations are definable in \mathfrak{N}.
(7) Let $F: \mathbf{N}^{n} \rightarrow \mathbf{N}$, and define

$$
\langle F\rangle: \mathbf{N} \rightarrow \mathbf{N}, \quad\langle F\rangle(a):=F\left((a)_{0}, \ldots,(a)_{n-1}\right),
$$

so $F\left(a_{1}, \ldots, a_{n}\right)=\langle F\rangle\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)$ for all $a_{1}, \ldots, a_{n} \in \mathbf{N}$. Then F is computable iff $\langle F\rangle$ is computable. (Hence n-variable computability reduces to 1 variable computability.)

Let \mathcal{F} be a collection of functions $F: \mathbf{N}^{m} \rightarrow \mathbf{N}$ for various m. We say that \mathcal{F} is closed under composition if for all $G: \mathbf{N}^{m} \rightarrow \mathbf{N}$ in \mathcal{F} and all $H_{1}, \ldots, H_{m}: \mathbf{N}^{n} \rightarrow \mathbf{N}$ in \mathcal{F}, the function $F=G\left(H_{1}, \ldots, H_{m}\right): \mathbf{N}^{n} \rightarrow \mathbf{N}$ is in \mathcal{F}. We say that \mathcal{F} is closed under minimalization if for every $G: \mathbf{N}^{n+1} \rightarrow \mathbf{N}$ in \mathcal{F} such that for all $a \in \mathbf{N}^{n}$ there exists $x \in \mathbf{N}$ with $G(a, x)=0$, the function $F: \mathbf{N}^{n} \rightarrow \mathbf{N}$ given by $F(a)=\mu x(G(a, x)=0)$ is in \mathcal{F}. We say that a relation $R \subseteq \mathbf{N}^{n}$ is in \mathcal{F} if its characteristic function χ_{R} is in \mathcal{F}.
(8) Suppose \mathcal{F} contains the functions mentioned in (R1), and is closed under composition and minimalization. All lemmas and propositions of this Section go through with computable replaced by in \mathcal{F}.

5.2 The Church-Turing Thesis

The computable functions as defined in the last section are also computable in the informal sense that for each such function $F: \mathbf{N}^{n} \rightarrow \mathbf{N}$ there is an algorithm that on any input $a \in \mathbf{N}^{n}$ stops after a finite number of steps and produces an output $F(a)$. An algorithm is given by a finite list of instructions, a computer program, say. These instructions should be deterministic (leave nothing to chance or choice). We deliberately neglect physical constraints of space and time: imagine that the program that implements the algorithm has unlimited access to time and space to do its work on any given input.

Let us write "calculable" for this intuitive, informal, idealized notion of computable. The Church-Turing Thesis asserts
each calculable function $F: \mathbf{N} \rightarrow \mathbf{N}$ is computable.
The corresponding assertion for functions $\mathbf{N}^{n} \rightarrow \mathbf{N}$ follows, because the result of Exercise 7 in Section 5.1 is clearly also valid for "calculable" instead of "computable." Call a set $P \subseteq \mathbf{N}$ calculable if its characteristic function is calculable.

While the Church-Turing Thesis is not a precise mathematical statement, it is an important guiding principle, and has never failed in practice: any function that any competent person has ever recognized as being calculable, has turned out to be computable, and the informal grounds for calculability have always translated routinely into an actual proof of computability. Here is a heuristic (informal) argument that might make the Thesis plausible.

Let an algorithm be given for computing $F: \mathbf{N} \rightarrow \mathbf{N}$. We can assume that on any input $a \in \mathbf{N}$ this algorithm consists of a finite sequence of steps, numbered from 0 to n, say, where at each step i it produces a natural number
a_{i}, with $a_{0}=a$ as starting number. It stops after step n with $a_{n}=F(a)$. We assume that for each $i<n$ the number a_{i+1} is calculated by some fixed procedure from the earlier numbers a_{0}, \ldots, a_{i}, that is, we have a calculable function $G: \mathbf{N} \rightarrow \mathbf{N}$ such that $a_{i+1}=G\left(\left\langle a_{0}, \ldots, a_{i}\right\rangle\right)$ for all $i<n$. The algorithm should also tell us when to stop, that is, we should have a calculable $P \subseteq \mathbf{N}$ such that $\neg P\left(\left\langle a_{0}, \ldots, a_{i}\right\rangle\right)$ for $i<n$ and $P\left(\left\langle a_{0}, \ldots, a_{n}\right\rangle\right)$. Since G and P describe only single steps in the algorithm for F it is reasonable to assume that they at least are computable. Once this is agreed to, one can show easily that F is computable as well, see the exercise below.

A skeptical reader may find this argument dubious, but Turing gave in 1936 a compelling informal analysis of what functions $F: \mathbf{N} \rightarrow \mathbf{N}$ are calculable in principle, and this has led to general acceptance of the Thesis. In addition, various alternative formalizations of the informal notion of calculable function have been proposed, using various kinds of machines, formal systems, and so on. They all have turned out to be equivalent in the sense of defining the same class of functions on \mathbf{N}, namely the computable functions.

The above is only a rather narrow version of the Church-Turing Thesis, but it suffices for our purpose. There are various refinements and more ambitious versions. Also, our Church-Turing Thesis does not characterize mathematically the intuitive notion of algorithm, only the intuitive notion of function computable by an algorithm that produces for each input from \mathbf{N} an output in \mathbf{N}.

Exercises.

(1) Let $G: \mathbf{N} \rightarrow \mathbf{N}$ and $P \subseteq \mathbf{N}$ be given. Then there is for each $a \in \mathbf{N}$ at most one finite sequence a_{0}, \ldots, a_{n} of natural numbers such that $a_{0}=a$, for all $i<n$ we have $a_{i+1}=G\left(\left\langle a_{0}, \ldots, a_{i}\right\rangle\right)$ and $\neg P\left(\left\langle a_{0}, \ldots, a_{i}\right\rangle\right)$, and $P\left(\left\langle a_{0}, \ldots, a_{n}\right\rangle\right)$. Suppose that for each $a \in \mathbf{N}$ there is such a finite sequence a_{0}, \ldots, a_{n}, and put $F(a):=a_{n}$, thus defining a function $F: \mathbf{N} \rightarrow \mathbf{N}$. If G and P are computable, so is F.

5.3 Primitive Recursive Functions

This section is not really needed in the rest of this chapter, but it may throw light on some issues relating to computability. One such issue is the condition in Rule (R3) for generating computable functions that for all $a \in \mathbf{N}^{n}$ there exists $y \in \mathbf{N}$ such that $G(a, y)=0$. This condition is not constructive: it could be satisfied for a certain G without us ever knowing it. We shall now argue informally that it is impossible to generate in a fully constructive way exactly the computable functions. Such a constructive generation process would presumably enable us to enumerate effectively a sequence of algorithms $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots$ such that each α_{n} computes a (computable) function $f_{n}: \mathbf{N} \rightarrow \mathbf{N}$, and such that every computable function $f: \mathbf{N} \rightarrow \mathbf{N}$ occurs in the sequence $f_{0}, f_{1}, f_{2}, \ldots$, possibly more than once. Now consider the function $f_{\text {diag }}: \mathbf{N} \rightarrow \mathbf{N}$ defined by

$$
f_{\mathrm{diag}}(n)=f_{n}(n)+1
$$

Then $f_{\text {diag }}$ is clearly computable in the intuitive sense, but $f_{\text {diag }} \neq f_{n}$ for all n, in violation of the Church-Turing Thesis.

This way of producing a new function $f_{\text {diag }}$ from a sequence $\left(f_{n}\right)$ is called diagonalization. ${ }^{2}$ The same basic idea applies in other cases, and is used in a more sophisticated form in the proof of Gödel's incompleteness theorem.

Here is a class of computable functions that can be generated constructively: The primitive recursive functions are the functions $f: \mathbf{N}^{n} \rightarrow \mathbf{N}$ obtained inductively as follows:
(PR1) The nullary function $\mathbf{N}^{0} \rightarrow \mathbf{N}$ with value 0 , the unary successor function S, and all coordinate functions I_{i}^{n} are primitive recursive.
(PR2) If $G: \mathbf{N}^{m} \rightarrow \mathbf{N}$ is primitive recursive and $H_{1}, \ldots, H_{m}: \mathbf{N}^{n} \rightarrow \mathbf{N}$ are primitive recursive, then $G\left(H_{1}, \ldots, H_{m}\right)$ is primitive recursive.
(PR3) If $F: \mathbf{N}^{n+1} \rightarrow \mathbf{N}$ is obtained by primitive recursion from primitive recursive functions $G: \mathbf{N}^{n} \rightarrow \mathbf{N}$ and $H: \mathbf{N}^{n+2} \rightarrow \mathbf{N}$, then F is primitive recursive.

A relation $R \subseteq \mathbf{N}^{n}$ is said to be primitive recursive if its characteristic function χ_{R} is primitive recursive. As the next two lemmas show, the computable functions that one ordinarily meets with are primitive recursive. In the rest of this section x ranges over \mathbf{N}^{m} with m depending on the context, and y over \mathbf{N}.

Lemma 5.3.1. The following functions and relations are primitive recursive:
(i) each constant function c_{m}^{n};
(ii) the binary operations,$+ \cdot$, and $(x, y) \mapsto x^{y}$ on \mathbf{N};
(iii) the predecessor function $\operatorname{Pd}: \mathbf{N} \rightarrow \mathbf{N}$ given by $\operatorname{Pd}(x)=x \dot{-}$, the unary relation $\{x \in \mathbf{N}: x>0\}$, the function $-: \mathbf{N}^{2} \rightarrow \mathbf{N}$;
(iv) the binary relations \geq, \leq and $=$ on \mathbf{N}.

Proof. The function c_{m}^{0} is obtained from c_{0}^{0} by applying (PR2) m times with $G=S$. Next, c_{m}^{n} is obtained by applying (PR2) with $G=c_{m}^{0}$ (with $k=0$ and $t=n$). The functions in (ii) are obtained by the usual primitive recursions. It is also easy to write down primitive recursions for the functions in (iii), in the order they are listed. For (iv), note that $\chi_{\geq}(x, y+1)=\chi_{>0}(x) \cdot \chi_{\geq}(\operatorname{Pd}(x), y)$.
Lemma 5.3.2. With the possible exceptions of Lemmas 5.1 .8 and 5.1.9, all Lemmas and Propositions in Section 5.1 go through with computable replaced by primitive recursive.

Proof. To obtain the primitive recursive version of Lemma 5.1.10, note that
$F_{R}(a, 0)=0, \quad F_{R}(a, y+1)=F_{R}(a, y) \cdot \chi_{R}\left(a, F_{R}(a, y)\right)+(y+1) \cdot \chi_{\neg R}\left(a, F_{R}(a, y)\right)$.
A consequence of the primitive recursive version of Lemma 5.1.10 is the following restricted minimalization scheme for primitive recursive functions:

[^9]if $R \subseteq \mathbf{N}^{n+1}$ and $H: \mathbf{N}^{n} \rightarrow \mathbf{N}$ are primitive recursive, and for all $a \in \mathbf{N}^{n}$ there exists $x<H(a)$ such that $R(a, x)$, then the function $F: \mathbf{N}^{n} \rightarrow \mathbf{N}$ given by $F(a)=\mu x R(a, x)$ is primitive recursive.

The primitive recursive versions of Lemmas 5.1.11-5.1.16 and Proposition 5.1.17 now follow easily. In particular, the function β is primitive recursive. Also, the proof of Proposition 5.1 .17 yields:
There is a primitive recursive function $B: \mathbf{N} \rightarrow \mathbf{N}$ such that, whenever

$$
n<N, a_{0}<N, \ldots, a_{n}<N, \quad\left(n, a_{0}, \ldots, a_{n}, N \in \mathbf{N}\right)
$$

then for some $a<B(N)$ we have $\beta(a, i)=a_{i}$ for $i=0, \ldots, n$.
Using this fact and restricted minimalization, it follows that the unary relation Seq, the unary function lh , and the binary functions $(a, i) \mapsto(a)_{i}$, In and $*$ are primitive recursive.

Let a function $F: \mathbf{N}^{n+1} \rightarrow \mathbf{N}$ be given. Then $\bar{F}: \mathbf{N}^{n+1} \rightarrow \mathbf{N}$ satisfies the primitive recursion $\bar{F}(a, 0)=0$ and $\bar{F}(a, b+1)=\bar{F}(a, b) *\langle F(a, b)\rangle$. It follows that if F is primitive recursive, so is \bar{F}. The converse is obvious. Suppose also that $G: \mathbf{N}^{n+2} \rightarrow \mathbf{N}$ is primitive recursive, and $F(a, b)=G(a, b, \bar{F}(a, b))$ for all $(a, b) \in \mathbf{N}^{n+1}$; then \bar{F} satisfies the primitive recursion

$$
\bar{F}(A, 0)=G(a, 0,0), \quad \bar{F}(a, b+1)=\bar{F}(a, b) *\langle G(a, b, \bar{F}(a, b))\rangle
$$

so \bar{F} (and hence F) is primitive recursive.

The Ackermann Function. By diagonalization we can produce a computable function that is not primitive recursive, but the so-called Ackermann function does more, and plays a role in several contexts. First we define inductively a sequence $A_{0}, A_{1}, A_{2}, \ldots$ of primitive recursive functions $A_{n}: \mathbf{N} \rightarrow \mathbf{N}$:

$$
\begin{aligned}
A_{0}(y)=y+1, \quad A_{n+1}(0) & =A_{n}(1) \\
A_{n+1}(y+1) & =A_{n}\left(A_{n+1}(y)\right)
\end{aligned}
$$

Thus $A_{0}=S$ and $A_{n+1} \circ A_{0}=A_{n} \circ A_{n+1}$. One verifies easily that $A_{1}(y)=y+2$ and $A_{2}(y)=2 y+3$ for all y. We define the Ackermann function $A: \mathbf{N}^{2} \rightarrow \mathbf{N}$ by $A(n, y):=A_{n}(y)$.

Lemma 5.3.3. The function A is computable, and strictly increasing in each variable. Also, for all n and x, y :
(i) $A_{n}(x+y) \geq A_{n}(x)+y$;
(ii) $n \geq 1 \Longrightarrow A_{n+1}(y)>A_{n}(y)+y$;
(iii) $A_{n+1}(y) \geq A_{n}(y+1)$;
(iv) $2 A_{n}(y)<A_{n+2}(y)$;
(v) $x<y \Longrightarrow A_{n}(x+y) \leq A_{n+2}(y)$.

Proof. We leave it as an exercise at the end of this section to show that A is computable. Assume inductively that A_{0}, \ldots, A_{n} are strictly increasing and $A_{0}(y)<A_{1}(y)<\cdots<A_{n}(y)$ for all y. Then

$$
A_{n+1}(y+1)=A_{n}\left(A_{n+1}(y)\right) \geq A_{0}\left(A_{n+1}(y)\right)>A_{n+1}(y)
$$

so A_{n+1} is strictly increasing. Next we show that $A_{n+1}(y)>A_{n}(y)$ for all y : $A_{n+1}(0)=A_{n}(1)$, so $A_{n+1}(0)>A_{n}(0)$ and $A_{n+1}(0)>1$, so $A_{n+1}(y)>y+1$ for all y. Hence $A_{n+1}(y+1)=A_{n}\left(A_{n+1}(y)\right)>A_{n}(y+1)$.

Inequality (i) follows easily by induction on n, and a second induction on y.
For inequality (ii), we proceed again by induction on (n, y) : Using $A_{1}(y)=$ $y+2$ and $A_{2}(y)=2 y+3$, we obtain $A_{2}(y)>A_{1}(y)+y$. Let $n>1$, and assume inductively that $A_{n}(y)>A_{n-1}(y)+y$. Then $A_{n+1}(0)=A_{n}(1)>A_{n}(0)+0$, and

$$
\begin{aligned}
A_{n+1}(y+1) & =A_{n}\left(A_{n+1}(y)\right) \geq A_{n}\left(y+1+A_{n}(y)\right) \\
& \geq A_{n}(y+1)+A_{n}(y)>A_{n}(y+1)+y+1
\end{aligned}
$$

In (iii) we proceed by induction on y. We have equality for $y=0$. Assuming inductively that (iii) holds for a certain y we obtain

$$
A_{n+1}(y+1)=A_{n}\left(A_{n+1}(y)\right) \geq A_{n}\left(A_{n}(y+1)\right) \geq A_{n}(y+2)
$$

Note that (iv) holds for $n=0$. For $n>0$ we have by (i), (ii) and (iii):

$$
A_{n}(y)+A_{n}(y) \leq A_{n}\left(y+A_{n}(y)\right)<A_{n}\left(A_{n+1}(y)\right)=A_{n+1}(y+1) \leq A_{n+2}(y)
$$

Note that (v) holds for $n=0$. Assume (v) holds for a certain n. Let $x<y+1$. We can assume inductively that if $x<y$, then $A_{n+1}(x+y) \leq A_{n+3}(y)$, and we want to show that

$$
A_{n+1}(x+y+1) \leq A_{n+3}(y+1)
$$

Case 1. $x=y$. Then

$$
\begin{aligned}
A_{n+1}(x+y+1) & =A_{n+1}(2 x+1)=A_{n}\left(A_{n+1}(2 x)\right) \\
& \leq A_{n+2}(2 x)<A_{n+2}\left(A_{n+3}(x)\right)=A_{n+3}(y+1)
\end{aligned}
$$

Case 2. $x<y$. Then

$$
A_{n+1}(x+y+1)=A_{n}\left(A_{n+1}(x+y)\right) \leq A_{n+2}\left(A_{n+3}(y)\right)=A_{n+3}(y+1)
$$

Below we put $|x|:=x_{1}+\cdots+x_{m}$ for $x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbf{N}^{m}$.
Proposition 5.3.4. Given any primitive recursive function $F: \mathbf{N}^{m} \rightarrow \mathbf{N}$ there is an $n=n(F)$ such that $F(x) \leq A_{n}(|x|)$ for all $x \in \mathbf{N}^{m}$.

Proof. Call an $n=n(F)$ with the property above a bound for F. The nullary constant function with value 0 , the successor function S, and each coordinate function $I_{i}^{m},(1 \leq i \leq m)$, has bound 0 . Next, assume $F=G\left(H_{1}, \ldots, H_{k}\right)$ where $G: \mathbf{N}^{k} \rightarrow \mathbf{N}$ and $H_{1}, \ldots, H_{k}: \mathbf{N}^{m} \rightarrow \mathbf{N}$ are primitive recursive, and assume inductively that $n(G)$ and $n\left(H_{1}\right), \ldots, n\left(H_{k}\right)$ are bounds for G and H_{1}, \ldots, H_{k}. By part (iv) of the previous lemma we can take $N \in \mathbf{N}$ such that $n(G) \leq N$, and $\sum_{i} H_{i}(x) \leq A_{N+1}(|x|)$ for all x. Then
$F(x)=G\left(H_{1}(x), \ldots, H_{k}(x)\right) \leq A_{N}\left(\sum_{i} H_{i}(x)\right) \leq A_{N}\left(A_{N+1}(|x|)\right) \leq A_{N+2}(|x|)$.
Finally, assume that $F: \mathbf{N}^{m+1} \rightarrow \mathbf{N}$ is obtained by primitive recursion from the primitive recursive functions $G: \mathbf{N}^{m} \rightarrow \mathbf{N}$ and $H: \mathbf{N}^{m+2} \rightarrow \mathbf{N}$, and assume inductively that $n(G)$ and $n(H)$ are bounds for G and H. Take $N \in \mathbf{N}$ such that $n(G) \leq N+3$ and $n(H) \leq N$. We claim that $N+3$ is a bound for F : $F(x, 0)=G(x) \leq A_{N+3}(|x|)$, and by part (v) of the lemma above,

$$
\begin{aligned}
F(x, y+1)=H(x, y, F(x, y)) & \leq A_{N}\left\{|x|+y+A_{N+3}(|x|+y)\right\} \\
& \leq A_{N+2}\left\{A_{N+3}(|x|+y)\right\}=A_{N+3}(|x|+y+1)
\end{aligned}
$$

Consider the function $A^{*}: \mathbf{N} \rightarrow \mathbf{N}$ defined by $A^{*}(n)=A(n, n)$. Then A^{*} is computable, and for any primitive recursive function $F: \mathbf{N} \rightarrow \mathbf{N}$ we have $F(y)<A^{*}(y)$ for all $y>n(F)$, where $n(F)$ is a bound for F. In particular, A^{*} is not primitive recursive. Hence A is computable but not primitive recursive.

The recursion in "primitive recursion" involves only one variable; the other variables just act as parameters. The Ackermann function is defined by a recursion involving both variables:

$$
A(0, y)=y+1, \quad A(x+1,0)=A(x, 1), \quad A(x+1, y+1)=A(x, A(x+1, y))
$$

This kind of double recursion is therefore more powerful in some ways than what can be done in terms of primitive recursion and composition.

Exercises.

(1) The graph of the Ackermann function is primitive recursive. (It follows that the Ackermann function is recursive, and it gives an example showing that Lemma 5.1.9 fails with "primitive recursive" in place of "computable".)

5.4 Representability

Let L be a numerical language, that is, L contains the constant symbol 0 and the unary function symbol S. We let $S^{n} 0$ denote the term $S \ldots S 0$ in which S appears exactly n times. So $S^{0} 0$ is the term $0, S^{1} 0$ is the term $S 0$, and so on. Our key example of a numerical language is

$$
L(\underline{\mathrm{~N}}):=\{0, S,+, \cdot,<\} \quad \text { (the language of } \mathfrak{N}) .
$$

Here $\underline{\mathrm{N}}$ is the following set of nine axioms, where we fix two distinct variables x and y for the sake of definiteness:

$\underline{\mathrm{N} 1}$	$\forall x(S x \neq 0)$
$\underline{\mathrm{N} 2}$	$\forall x \forall y(S x=S y \rightarrow x=y)$
$\underline{\mathrm{N} 3}$	$\forall x(x+0=x)$
$\underline{\mathrm{N} 4}$	$\forall x \forall y(x+S y=S(x+y))$
$\underline{\mathrm{N} 5}$	$\forall x(x \cdot 0=0)$
$\underline{\underline{\mathrm{N}} 6}$	$\forall x \forall y(x \cdot S y=x \cdot y+x)$
$\underline{\mathrm{N} 7}$	$\forall x(x \nless 0)$
$\underline{\mathrm{N} 8}$	$\forall x \forall y(x<S y \leftrightarrow x<y \vee x=y)$
$\underline{\mathrm{N} 9}$	$\forall x \forall y(x<y \vee x=y \vee y<x)$

These axioms are clearly true in \mathfrak{N}. The fact that $\underline{\mathrm{N}}$ is finite will play a role later. It is a very weak set of axioms, but strong enough to prove numerical facts like

$$
S S 0+S S S 0=S S S S S 0, \quad \forall x(x<S S 0 \rightarrow(x=0 \vee x=S 0))
$$

Lemma 5.4.1. For each n,

$$
\underline{\mathrm{N}} \vdash x<S^{n+1} 0 \leftrightarrow\left(x=0 \vee \cdots \vee x=S^{n} 0\right)
$$

Proof. By induction on n. For $n=0, \underline{\mathrm{~N}} \vdash x<S 0 \leftrightarrow x=0$ by axioms $\underline{\mathrm{N} 8}$ and N7. Assume $n>0$ and $\underline{\mathrm{N}} \vdash x<S^{n} 0 \leftrightarrow\left(x=0 \vee \cdots \vee x=S^{n-1} 0\right)$. Use axiom $\underline{\mathrm{N} 8}$ to conclude that $\underline{\mathrm{N}} \vdash x<S^{n+1} 0 \leftrightarrow\left(x=0 \vee \cdots \vee x=S^{n} 0\right)$.

To give an impression how weak $\underline{\mathrm{N}}$ is we consider some of its models:

Some models of N .

(1) We usually refer to \mathfrak{N} as the standard model of \underline{N}.
(2) Another model of $\underline{\mathrm{N}}$ is $\mathfrak{N}[x]:=(\mathbf{N}[x] ; \ldots)$, where $0, S,+$, are interpreted as the zero polynomial, as the unary operation of adding 1 to a polynomial, and as addition and multiplication of polynomials in $\mathbf{N}[x]$, and where $<$ is interpreted as follows: $f(x)<g(x)$ iff $f(n)<g(n)$ for all large enough n.
(3) A more bizarre model of $\mathrm{N}:\left(\mathbf{R}^{\geq 0} ; \ldots\right)$ with the usual interpretations of $0, S,+, \cdot$, in particular $S(r):=r+1$, and with $<$ interpreted as the binary relation $<_{\mathbf{N}}$ on $\mathbf{R}^{\geq 0}: r<_{\mathbf{N}} s \Leftrightarrow(r, s \in \mathbf{N}$ and $r<s)$ or $s \notin \mathbf{N}$.

Example (2) shows that $\underline{\mathrm{N}} \nvdash \forall x \exists y(x=2 y \vee x=2 y+S 0)$, since in $\mathfrak{N}[x]$ the element x is not in $2 \mathbf{N}[x] \cup 2 \mathbf{N}[x]+1$; in other words, $\underline{\mathbf{N}}$ cannot prove "every element is even or odd." In example (3) we have $1 / 2<_{\mathbf{N}} 1 / 2$, so the binary relation $<_{\mathbf{N}}$ on $\mathbf{R}^{\geq 0}$ is not even a total order. One useful fact about models of $\underline{\mathrm{N}}$ is that they all contain the so-called standard model \mathfrak{N} in a unique way:

Lemma 5.4.2. Suppose $\mathcal{A} \models \underline{\mathrm{N}}$. Then there is a unique homomorphism

$$
\iota: \mathfrak{N} \rightarrow \mathcal{A}
$$

This homomorphism ι is an embedding, and for all $a \in A$ and all n,
(i) if $a<{ }^{\mathcal{A}} \iota(n)$, then $a=\iota(m)$ for some $m<n$;
(ii) if $a \notin \iota(\mathbf{N})$, then $\iota(n)<{ }^{\mathcal{A}} a$.

As to the proof, note that for any homomorphism $\iota: \mathfrak{N} \rightarrow \mathcal{A}$ and all n we must have $\iota(n)=\left(S^{n} 0\right)^{\mathcal{A}}$. Hence there is at most one such homomorphism. It remains to show that the map $n \mapsto\left(S^{n} 0\right)^{\mathcal{A}}: \mathbf{N} \rightarrow A$ is an embedding $\iota: \mathfrak{N} \rightarrow \mathcal{A}$ with properties (i) and (ii). We leave this as an exercise to the reader.

Definition. Let L be a numerical language, and Σ a set of L-sentences. A relation $R \subseteq \mathbf{N}^{m}$ is said to be Σ-representable, if there is an L-formula $\varphi\left(x_{1}, \ldots, x_{m}\right)$ such that for all $\left(a_{1}, \ldots, a_{m}\right) \in \mathbf{N}^{m}$ we have
(i) $R\left(a_{1}, \ldots, a_{m}\right) \Longrightarrow \Sigma \vdash \varphi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0\right)$
(ii) $\neg R\left(a_{1}, \ldots, a_{m}\right) \Longrightarrow \Sigma \vdash \neg \varphi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0\right)$

Such a $\varphi\left(x_{1}, \ldots, x_{m}\right)$ is said to represent R in Σ or to Σ-represent R. Note that if $\varphi\left(x_{1}, \ldots, x_{m}\right) \Sigma$-represents R and Σ is consistent, then for all $\left(a_{1}, \ldots, a_{m}\right) \in \mathbf{N}^{m}$

$$
\begin{aligned}
R\left(a_{1}, \ldots, a_{m}\right) & \Longleftrightarrow \Sigma \vdash \varphi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0\right), \\
\neg R\left(a_{1}, \ldots, a_{m}\right) & \Longleftrightarrow \Sigma \vdash \neg \varphi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0\right) .
\end{aligned}
$$

A function $F: \mathbf{N}^{m} \rightarrow \mathbf{N}$ is Σ-representable if there is a formula $\varphi\left(x_{1}, \ldots, x_{m}, y\right)$ of L such that for all $\left(a_{1}, \ldots, a_{m}\right) \in \mathbf{N}^{m}$ we have

$$
\Sigma \vdash \varphi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0, y\right) \leftrightarrow y=S^{F\left(a_{1}, \ldots, a_{m}\right)} 0
$$

Such a $\varphi\left(x_{1}, \ldots, x_{m}, y\right)$ is said to represent F in Σ or to Σ-represent F.
An L-term $t\left(x_{1}, \ldots, x_{m}\right)$ is said to represent the function $F: \mathbf{N}^{m} \rightarrow \mathbf{N}$ in Σ if $\Sigma \vdash t\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0\right)=S^{F(a)} 0$ for all $a=\left(a_{1}, \ldots, a_{m}\right) \in \mathbf{N}^{m}$. Note that then the function F is Σ-represented by the formula $t\left(x_{1}, \ldots, x_{m}\right)=y$.

Proposition 5.4.3. Let L be a numerical language, Σ a set of L-sentences such that $\Sigma \vdash S 0 \neq 0$, and $R \subseteq \mathbf{N}^{m}$ a relation. Then

$$
R \text { is } \Sigma \text {-representable } \Longleftrightarrow \chi_{R} \text { is } \Sigma \text {-representable. }
$$

Proof. (\Leftarrow) Assume χ_{R} is Σ-representable and let $\varphi\left(x_{1}, \ldots, x_{m}, y\right)$ be an L formula Σ-representing it. We show that $\psi\left(x_{1}, \ldots, x_{m}\right):=\varphi\left(x_{1}, \ldots, x_{m}, S 0\right)$ Σ-represents R. Let $\left(a_{1}, \ldots, a_{m}\right) \in R$; then $\chi_{R}\left(a_{1}, \ldots, a_{m}\right)=1$. Hence

$$
\Sigma \vdash \varphi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0, y\right) \leftrightarrow y=S 0
$$

so $\Sigma \vdash \varphi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0, S 0\right)$, that is, $\Sigma \vdash \psi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0\right)$. Likewise, but now using also $\Sigma \vdash S 0 \neq 0$, we show that if $\left(a_{1}, \ldots, a_{m}\right) \notin R$, then $\Sigma \vdash$ $\neg \varphi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0, S 0\right)$.
(\Rightarrow) Conversely, assume R is Σ-representable and let $\psi\left(x_{1}, \ldots, x_{m}\right)$ be an L-formula Σ-representing it. We show that $\varphi\left(x_{1}, \ldots, x_{m}, y\right)$ given by

$$
\varphi\left(x_{1}, \ldots, x_{m}, y\right):=\left(\psi\left(x_{1}, \ldots, x_{m}\right) \wedge y=S 0\right) \vee\left(\neg \psi\left(x_{1}, \ldots, x_{m}\right) \wedge y=0\right)
$$

Σ-represents χ_{R}. Let $\left(a_{1}, \ldots, a_{m}\right) \in R$. Then $\Sigma \vdash \psi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0\right)$, hence
$\Sigma \vdash\left[\left(\psi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0\right) \wedge y=S 0\right) \vee\left(\neg \psi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0\right) \wedge y=0\right)\right] \leftrightarrow y=S 0$,
that is, $\Sigma \vdash \varphi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0, y\right) \leftrightarrow y=S 0$. Likewise, for $\left(a_{1}, \ldots, a_{m}\right) \notin R$, we obtain $\Sigma \vdash \varphi\left(S^{a_{1}} 0, \ldots, S^{a_{m}} 0, y\right) \leftrightarrow y=0$.

Theorem 5.4.4 (Representability). Each computable function $F: \mathbf{N}^{n} \rightarrow \mathbf{N}$ is N-representable. Each computable relation $R \subseteq \mathbf{N}^{m}$ is $\underline{\mathrm{N}}$-representable.

Proof. By Proposition 5.4 .3 we need only consider the case of functions. We make the following three claims:
$(\text { R1 })^{\prime} \quad+: \mathbf{N}^{2} \rightarrow \mathbf{N}, \cdot: \mathbf{N}^{2} \rightarrow \mathbf{N}, \chi \leq: \mathbf{N}^{2} \rightarrow \mathbf{N}$, and the coordinate function I_{i}^{n} (for each n and $i=1, \ldots, n$) are N -representable.
$(\mathrm{R} 2)^{\prime} \quad$ If $G: \mathbf{N}^{m} \rightarrow \mathbf{N}$ and $H_{1}, \ldots, H_{m}: \mathbf{N}^{n} \rightarrow \mathbf{N}$ are $\underline{\mathrm{N}}$-representable, then so is $F=G\left(H_{1}, \ldots, H_{m}\right): \mathbf{N}^{n} \rightarrow \mathbf{N}$ defined by

$$
F(a)=G\left(H_{1}(a), \ldots, H_{k}(a)\right)
$$

$(\mathrm{R} 3)^{\prime} \quad$ If $G: \mathbf{N}^{n+1} \rightarrow \mathbf{N}$ is $\underline{\mathrm{N}}$-representable, and for all $a \in \mathbf{N}^{n}$ there exists $x \in \mathbf{N}$ such that $G(a, x)=0$, then the function $F: \mathbf{N}^{n} \rightarrow \mathbf{N}$ given by

$$
F(a)=\mu x(G(a, x)=0)
$$

is N -representable.
(R1)' : The proof of this claim has six parts.
(i) The formula $x_{1}=x_{2}$ represents $\left\{(a, b) \in \mathbf{N}^{2}: a=b\right\}$ in \underline{N} :

Let $a, b \in \mathbf{N}$. If $a=b$, then obviously $\underline{\mathrm{N}} \vdash S^{a} 0=S^{b} 0$. Suppose that $a \neq b$. Then for every model \mathcal{A} of $\underline{\mathrm{N}}$ we have $\mathcal{A} \models S^{a} 0 \neq S^{b} 0$, by Lemma 5.4.2 and its proof. Hence $\underline{\mathrm{N}} \vdash S^{a} 0 \neq S^{b} 0$.
(ii) The term $x_{1}+x_{2}$ represents $+: \mathbf{N}^{2} \rightarrow \mathbf{N}$ in $\underline{\mathrm{N}}$:

Let $a+b=c$ where $a, b, c \in \mathbf{N}$. By Lemma 5.4.2 and its proof we have $\mathcal{A} \models S^{a} 0+S^{b} 0=S^{c} 0$ for each model \mathcal{A} of $\underline{\mathrm{N}}$. It follows that $\underline{\mathrm{N}} \vdash S^{a} 0+S^{b} 0=S^{c} 0$.
(iii) The term $x_{1} \cdot x_{2}$ represents $\cdot: \mathbf{N}^{2} \rightarrow \mathbf{N}$ in \underline{N} : The proof is similar to that of (ii).
(iv) The formula $x_{1}<x_{2}$ represents $\left\{(a, b) \in \mathbf{N}^{2}: a<b\right\}$ in $\underline{\mathrm{N}}$: The proof is similar to that of (i).
(v) $\chi_{\leq}: \mathbf{N}^{2} \rightarrow \mathbf{N}$ is N-representable:

By (i) and (iv), the formula $x_{1}<x_{2} \vee x_{1}=x_{2}$ represents the set $\left\{(a, b) \in \mathbf{N}^{2}: a \leq b\right\}$ in \underline{N}. So by Proposition 5.4.3, $\chi_{\leq}: \mathbf{N}^{2} \rightarrow \mathbf{N}$ is N-representable.
(vi) For $n \geq 1$ and $1 \leq i \leq n$, the term $t_{i}^{n}\left(x_{1}, \ldots, x_{n}\right):=x_{i}$, represents the function $I_{i}^{n}: \mathbf{N}^{n} \rightarrow \mathbf{N}$ in $\underline{\mathbf{N}}$. This is obvious.
$(\mathrm{R} 2)^{\prime}:$ Let $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}, z$ be distinct variables, let $G: \mathbf{N}^{m} \rightarrow \mathbf{N}$ be N-represented by $\psi\left(y_{1}, \ldots, y_{m}, z\right)$, and let $H_{i}: \mathbf{N}^{n} \rightarrow \mathbf{N}$ be \underline{N}-represented by $\varphi_{i}\left(x_{1}, \ldots, x_{n}, y_{i}\right)$ for $i=1, \ldots, m$.
Claim : $F=G\left(H_{1}, \ldots, H_{m}\right)$ is N-represented by

$$
\theta\left(x_{1}, \ldots, x_{n}, z\right):=\exists y_{1} \ldots \exists y_{m}\left(\left(\bigwedge_{i=1}^{m} \varphi_{i}\left(x_{1}, \ldots, x_{n}, y_{i}\right)\right) \wedge \psi\left(y_{1}, \ldots, y_{m}, z\right)\right)
$$

Put $a=\left(a_{1}, \ldots, a_{n}\right)$ and let $c=F(a)$. We have to show that

$$
\underline{\mathrm{N}} \vdash \theta\left(S^{a} 0, z\right) \leftrightarrow z=S^{c} 0, \quad \text { where } S^{a} 0 \text { abbreviates } S^{a_{1}} 0, \ldots, S^{a_{n}} 0
$$

Let $b_{i}=H_{i}(a)$ and put $b=\left(b_{1}, \ldots, b_{m}\right)$. Then $F(a)=G(b)=c$. Therefore, $\underline{\mathrm{N}} \vdash \psi\left(S^{b} 0, z\right) \leftrightarrow z=S^{c} 0$ and

$$
\underline{\mathrm{N}} \vdash \varphi_{i}\left(S^{a} 0, y_{i}\right) \leftrightarrow y_{i}=S^{b_{i}} 0, \quad(i=1, \ldots, m)
$$

Argue in models to conclude : $\underline{\mathrm{N}} \vdash \theta\left(S^{a} 0, z\right) \leftrightarrow z=S^{c} 0$.
$(R 3)^{\prime}: \quad$ Let $G: \mathbf{N}^{n+1} \rightarrow \mathbf{N}$ be such that for all $a \in \mathbf{N}^{n}$ there exists $b \in \mathbf{N}$ with $G(a, b)=0$. Define $F: \mathbf{N}^{n} \rightarrow \mathbf{N}$ by $F(a)=\mu b(G(a, b)=0)$. Suppose that G is $\underline{\mathrm{N}}$-represented by $\varphi\left(x_{1}, \ldots, x_{n}, y, z\right)$. We claim that the formula
$\psi\left(x_{1}, \ldots, x_{n}, y\right):=\varphi\left(x_{1}, \ldots, x_{n}, y, 0\right) \wedge \forall w\left(w<y \rightarrow \neg \varphi\left(x_{1}, \ldots, x_{n}, w, 0\right)\right)$
$\underline{\mathrm{N}}$-represents F. Let $a \in \mathbf{N}^{n}$ and let $b=F(a)$. Then $G(a, i) \neq 0$ for $i<b$ and $G(a, b)=0$. Therefore, $\underline{\mathrm{N}} \vdash \varphi\left(S^{a} 0, S^{b} 0, z\right) \leftrightarrow z=0$ and for $i<b$, $G(a, i) \neq 0$ and $\underline{\mathrm{N}} \vdash \varphi\left(S^{a} 0, S^{i} 0, z\right) \leftrightarrow z=S^{G(a, i)} 0$. By arguing in models using Lemma 5.4.2 we obtain $\underline{\mathrm{N}} \vdash \psi\left(S^{a} 0, y\right) \leftrightarrow y=S^{b} 0$, as claimed.

Remark. The converse of this theorem is also true, and is plausible from the Church-Turing Thesis. We shall prove the converse in the next section.

Exercises. In the exercises below, L is a numerical language and Σ is a set of L-sentences.
(1) Suppose $\Sigma \vdash S^{m} 0 \neq S^{n} 0$ whenever $m \neq n$. If a function $F: \mathbf{N}^{m} \rightarrow \mathbf{N}$ is Σ represented by the L-formula $\varphi\left(x_{1}, \ldots, x_{m}, y\right)$, then the graph of F, as a relation of arity $m+1$ on \mathbf{N}, is Σ-represented by $\varphi\left(x_{1}, \ldots, x_{m}, y\right)$. (This result applies to $\Sigma=\underline{\mathrm{N}}$, since $\underline{\mathrm{N}} \vdash S^{m} 0 \neq S^{n} 0$ whenever $m \neq n$.)
(2) Suppose $\Sigma \supseteq \underline{N}$. Then the set of all Σ-representable functions $F: \mathbf{N}^{m} \rightarrow \mathbf{N}$, ($m=0,1,2, \ldots$) is closed under composition and minimalization.

5.5 Decidability and Gödel Numbering

Definition. An L-theory T is a set of L-sentences closed under provability, that is, whenever $T \vdash \sigma$, then $\sigma \in T$.

Examples.

(1) Given a set Σ of L-sentences, the set $\operatorname{Th}(\Sigma):=\{\sigma: \Sigma \vdash \sigma\}$ of theorems of Σ, is an L-theory. If we need to indicate the dependence on L we write $\operatorname{Th}_{L}(\Sigma)$ for $\operatorname{Th}(\Sigma)$. We say that Σ axiomatizes an L-theory T (or is an axiomatization of T) if $T=\operatorname{Th}(\Sigma)$. For $\Sigma=\emptyset$ we also refer to $\operatorname{Th}_{L}(\Sigma)$ as predicate logic in L.
(2) Given an L-structure \mathcal{A}, the set $\operatorname{Th}(\mathcal{A}):=\{\sigma: \mathcal{A} \models \sigma\}$ is also an L theory, called the theory of \mathcal{A}. Note that the theory of \mathcal{A} is automatically complete.
(3) Given any class \mathcal{K} of L-structures, the set

$$
\operatorname{Th}(\mathcal{K}):=\{\sigma: \mathcal{A} \models \sigma \text { for all } \mathcal{A} \in \mathcal{K}\}
$$

is an L-theory, called the theory of \mathcal{K}. For example, for $L=L_{\text {Ring }}$, and \mathcal{K} the class of finite fields, $\operatorname{Th}(\mathcal{K})$ is the set of L-sentences that are true in all finite fields.

The decision problem for a given L-theory T is to find an algorithm to decide for any L-sentence σ whether or not σ belongs to T. Since we have not (yet) defined the concept of algorithm, this is just an informal description at this stage. One of our goals in this section is to define a formal counterpart, called decidability. In the next section we show that the $L(\underline{\mathrm{~N}})$-theory $\operatorname{Th}(\mathfrak{N})$ is undecidable; by the Church-Turing Thesis, this means that the decision problem for $\operatorname{Th}(\mathfrak{N})$ has no solution. (This result is a version of Church's Theorem, and is closely related to the Incompleteness Theorem.)

In the rest of this chapter the language L is assumed to be finite unless we say otherwise. This is done for simplicity, and at the end of this section we indicate how to avoid this assumption. We shall number the terms and formulas of L in such a way that various statements about these formulas and about formal proofs in this language can be translated effectively into equivalent statements about natural numbers expressible by sentences in $L(\underline{\mathrm{~N}})$.

Recall that $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots$ are our variables. We assign to each symbol

$$
s \in\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right\} \sqcup\{\text { logical symbols }\} \sqcup L
$$

a symbol number $\mathrm{SN}(s) \in \mathbf{N}$ as follows: $\mathrm{SN}\left(\mathrm{v}_{i}\right):=2 i$ and to each remaining symbol, in the finite set \{logical symbols $\} \sqcup L$, we assign an odd natural number as symbol number, subject to the condition that different symbols have different symbol numbers.

Definition. The Gödel number $\ulcorner t\urcorner$ of an L-term t is defined recursively:

$$
\ulcorner t\urcorner= \begin{cases}\left\langle\operatorname{SN}\left(\mathrm{v}_{i}\right)\right\rangle & \text { if } t=\mathrm{v}_{i}, \\ \left\langle\operatorname{SN}(F),\left\ulcorner t_{1}\right\urcorner, \ldots,\left\ulcorner t_{n}\right\urcorner\right\rangle & \text { if } t=F t_{1} \ldots t_{n} .\end{cases}
$$

The Gödel number $\ulcorner\varphi\urcorner$ of an L-formula φ is given recursively by

$$
\ulcorner\varphi\urcorner= \begin{cases}\langle\operatorname{SN}(\top)\rangle & \text { if } \varphi=\top, \\ \langle\operatorname{SN}(\perp)\rangle & \text { if } \varphi=\perp, \\ \left\langle\operatorname{SN}(=),\left\ulcorner t_{1}\right\urcorner,\left\ulcorner t_{2}\right\urcorner\right\rangle & \text { if } \varphi=\left(t_{1}=t_{2}\right), \\ \left\langle\operatorname{SN}(R),\left\ulcorner t_{1}\right\urcorner, \ldots,\left\ulcorner t_{m}\right\urcorner\right\rangle & \text { if } \varphi=R t_{1} \ldots t_{m}, \\ \langle\operatorname{SN}(\neg),\ulcorner\psi\urcorner\rangle & \text { if } \varphi=\neg \psi, \\ \left\langle\operatorname{SN}(\vee),\left\ulcorner\varphi_{1}\right\urcorner,\left\ulcorner\varphi_{2}\right\urcorner\right\rangle & \text { if } \varphi=\varphi_{1} \vee \varphi_{2}, \\ \left\langle\operatorname{SN}(\wedge),\left\ulcorner\varphi_{1}\right\urcorner,\left\ulcorner\varphi_{2}\right\urcorner\right\rangle & \text { if } \varphi=\varphi_{1} \wedge \varphi_{2}, \\ \langle\operatorname{SN}(\exists),\ulcorner x\urcorner,\ulcorner\psi\urcorner\rangle & \text { if } \varphi=\exists x \psi, \\ \langle\operatorname{SN}(\forall),\ulcorner x\urcorner,\ulcorner\psi\urcorner\rangle & \text { if } \varphi=\forall x \psi .\end{cases}
$$

Lemma 5.5.1. The following subsets of \mathbf{N} are computable:
(1) Vble $:=\{\ulcorner x\urcorner: x$ is a variable $\}$
(2) Term $:=\{\ulcorner t\urcorner: t$ is an L-term $\}$
(3) AFor $:=\{\ulcorner\varphi\urcorner: \varphi$ is an atomic L-formula $\}$
(4) For $:=\{\ulcorner\varphi\urcorner: \varphi$ is an L-formula $\}$

Proof. (1) $a \in$ Vble iff $a=\langle 2 b\rangle$ for some $b \leq a$.
(2) $a \in$ Term iff $a \in$ Vble or $a=\left\langle\operatorname{SN}(F),\left\ulcorner t_{1}\right\urcorner, \ldots,\left\ulcorner t_{n}\right\urcorner\right\rangle$ for some function symbol F of L of arity n and L-terms t_{1}, \ldots, t_{n} with Gödel numbers $<a$. We leave (3) to the reader.
(4) We have $\operatorname{For}(a) \Leftrightarrow \begin{cases}\operatorname{For}\left((a)_{1}\right) & \text { if } a=\left\langle\operatorname{SN}(\neg),(a)_{1}\right\rangle, \\ \operatorname{For}\left((a)_{1}\right) \text { and } \operatorname{For}\left((a)_{2}\right) & \text { if } a=\left\langle\operatorname{SN}(\vee),(a)_{1},(a)_{2}\right\rangle \\ & \text { or } a=\left\langle\operatorname{SN}(\wedge),(a)_{1},(a)_{2}\right\rangle, \\ \operatorname{Vble}\left((a)_{1}\right) \text { and } \operatorname{For}\left((a)_{2}\right) & \text { if } a=\left\langle\operatorname{SN}(\exists),(a)_{1},(a)_{2}\right\rangle \\ & \text { or } a=\left\langle\operatorname{SN}(\forall),(a)_{1},(a)_{2}\right\rangle, \\ \operatorname{AFor}(a) & \text { otherwise. }\end{cases}$

So For is computable.
In the next two lemmas, x ranges over variables, φ and ψ over L-formulas, and t and τ over L-terms.

Lemma 5.5.2. The function $\operatorname{Sub}: \mathbf{N}^{3} \rightarrow \mathbf{N}$ defined by $\operatorname{Sub}(a, b, c)=$
$\begin{cases}c & \text { if } \operatorname{Vble}(a) \text { and } a=b, \\ \left\langle(a)_{0}, \operatorname{Sub}\left((a)_{1}, b, c\right), \ldots, \operatorname{Sub}\left((a)_{n}, b, c\right)\right\rangle & \text { if } a=\left\langle(a)_{0}, \ldots,(a)_{n}\right\rangle \text { with } n>0 \text { and } \\ & (a)_{0} \neq \operatorname{SN}(\exists),(a)_{0} \neq \operatorname{SN}(\forall), \\ \left\langle\operatorname{SN}(\exists),(a)_{1}, \operatorname{Sub}\left((a)_{2}, b, c\right)\right\rangle & \text { if } a=\left\langle\operatorname{SN}(\exists),(a)_{1},(a)_{2}\right\rangle \text { and }(a)_{1} \neq b, \\ \left\langle\operatorname{SN}(\forall),(a)_{1}, \operatorname{Sub}\left((a)_{2}, b, c\right)\right\rangle & \text { if } a=\left\langle\operatorname{SN}(\forall),(a)_{1},(a)_{2}\right\rangle \text { and }(a)_{1} \neq b, \\ a & \text { otherwise }\end{cases}$
is computable, and satisfies

$$
\operatorname{Sub}(\ulcorner t\urcorner,\ulcorner x\urcorner,\ulcorner\tau\urcorner)=\ulcorner t(\tau / x)\urcorner \text { and } \operatorname{Sub}(\ulcorner\varphi\urcorner,\ulcorner x\urcorner,\ulcorner\tau\urcorner)=\ulcorner\varphi(\tau / x)\urcorner \text {. }
$$

Proof. Exercise; see also exercise (2) of Section 2.5.
Lemma 5.5.3. The following relations on \mathbf{N} are computable:
(1) $\operatorname{PrAx}:=\{\ulcorner\varphi\urcorner: \varphi$ is a propositional axiom $\} \subseteq \mathbf{N}$
(2) $\mathrm{Eq}:=\{\ulcorner\varphi\urcorner: \varphi$ is an equality axiom $\} \subseteq \mathbf{N}$
(3) $\operatorname{Fr}:=\{(\ulcorner\varphi\urcorner,\ulcorner x\urcorner): x$ occurs free in $\varphi\} \subseteq \mathbf{N}^{2}$
(4) FrSub $:=\{(\ulcorner\varphi\urcorner,\ulcorner x\urcorner,\ulcorner\tau\urcorner): \tau$ is free for x in $\varphi\} \subseteq \mathbf{N}^{3}$
(5) Quant $:=\{\ulcorner\psi\urcorner: \psi$ is a quantifier axiom $\} \subseteq \mathbf{N}$
(6) MP $:=\left\{\left(\left\ulcorner\varphi_{1}\right\urcorner,\left\ulcorner\varphi_{1} \rightarrow \varphi_{2}\right\urcorner,\left\ulcorner\varphi_{2}\right\urcorner\right): \varphi_{1}, \varphi_{2}\right.$ are L-formulas $\} \subseteq \mathbf{N}^{3}$
(7) Gen $:=\{(\ulcorner\varphi\urcorner,\ulcorner\psi\urcorner): \psi$ follows from φ by the generalization rule $\} \subseteq \mathbf{N}^{2}$
(8) Sent $:=\{\ulcorner\varphi\urcorner: \varphi$ is a sentence $\} \subseteq \mathbf{N}$

Proof. This is a lengthy, tedious, but routine exercise. The idea is to translate the usual inductive or explicit description of the relevant syntactic notions into a description of its "Gödel image" that establishes computability of this image. For example, when $\varphi=\varphi_{1} \vee \varphi_{2}$, one can use facts like: x occurs free in φ iff x occurs free in φ_{1} or in φ_{2}; and τ is free for x in φ iff τ is free for x in φ_{1} and τ is free for x in φ_{2}. As usual, the main inductive steps concern terms, atomic formulas, and formulas that start with a quantifier symbol. See also exercise (1) of Section 2.7. As to (8), we have

$$
\operatorname{Sent}(a) \Longleftrightarrow \operatorname{For}(a) \text { and } \forall i_{<a} \neg \operatorname{Fr}(a, i),
$$

so (8) follows from (1) and earlier results.
In the rest of this Section Σ is a set of L-sentences. Put

$$
\ulcorner\Sigma\urcorner:=\{\ulcorner\sigma\urcorner: \sigma \in \Sigma\},
$$

and call Σ computable if $\ulcorner\Sigma\urcorner$ is computable.
Definition. $\operatorname{Prf}_{\Sigma}$ is the set of Gödel numbers of proofs from Σ, that is,

$$
\operatorname{Prf}_{\Sigma}:=\left\{\left\langle\left\ulcorner\varphi_{1}\right\urcorner, \ldots,\left\ulcorner\varphi_{n}\right\urcorner\right\rangle: \varphi_{1}, \ldots, \varphi_{n} \text { is a proof from } \Sigma\right\} .
$$

So every element of $\operatorname{Prf}_{\Sigma}$ is of the form $\left\langle\left\ulcorner\varphi_{1}\right\urcorner, \ldots,\left\ulcorner\varphi_{n}\right\urcorner\right\rangle$ where $n \geq 1$ and every φ_{k} is either in Σ, or a logical axiom, or obtained from some φ_{i}, φ_{j} with $1 \leq i, j<k$ by Modus Ponens, or obtained from some φ_{i} with $1 \leq i<k$ by Generalization.

Lemma 5.5.4. If Σ is computable, then $\operatorname{Prf}_{\Sigma}$ is computable.
Proof. This is because a is in $\operatorname{Prf}_{\Sigma}$ iff $\operatorname{Seq}(a)$ and $\operatorname{lh}(a) \neq 0$ and for every $k<$ $\operatorname{lh}(a)$ either $(a)_{k} \in\ulcorner\Sigma\urcorner \cup \operatorname{PrAx} \cup \mathrm{Eq} \cup$ Quant or $\exists i, j<k: \operatorname{MP}\left((a)_{i},(a)_{j},(a)_{k}\right)$ or $\exists i<k: \operatorname{Gen}\left((a)_{i},(a)_{k}\right)$.

Definition. An L-theory T is said to be computably axiomatizable if T has a computable axiomatization. ${ }^{3}$

[^10]We say that T is decidable if $\ulcorner T\urcorner$ is computable, and undecidable otherwise. (Thus " T is decidable" means the same thing as " T is computable," but for L-theories "decidable" is more widely used than "computable".)

Definition. A relation $R \subseteq \mathbf{N}^{n}$ is said to be computably generated if there is a computable relation $Q \subseteq \mathbf{N}^{n+1}$ such that for all $a \in \mathbf{N}^{n}$ we have

$$
R(a) \Leftrightarrow \exists x Q(a, x)
$$

"Recursively enumerable" is also used for "computably generated."
Remark. Every computable relation is obviously computably generated. We leave it as an exercise to check that the union and intersection of two computably generated n-ary relations on \mathbf{N} are computably generated. The complement of a computably generated subset of \mathbf{N} is not always computably generated, as we shall see later.

Lemma 5.5.5. If Σ is computable, then $\ulcorner\mathrm{Th}(\Sigma)\urcorner$ is computably generated.
Proof. Apply Lemma 5.5.4 and the fact that for all $a \in \mathbf{N}$

$$
a \in\ulcorner\operatorname{Th}(\Sigma)\urcorner \Longleftrightarrow \exists b\left(\operatorname{Prf}_{\Sigma}(b) \text { and } a=(b)_{\operatorname{lh}(b) \dot{-}_{1}} \text { and } \operatorname{Sent}(a)\right)
$$

Proposition 5.5.6 (Negation Theorem). Let $A \subseteq \mathbf{N}^{n}$ and suppose A and $\neg A$ are computably generated. Then A is computable.

Proof. Let $P, Q \subseteq \mathbf{N}^{n+1}$ be computable such that for all $a \in \mathbf{N}^{n}$ we have

$$
A(a) \Longleftrightarrow \exists x P(a, x), \quad \neg A(a) \Longleftrightarrow \exists x Q(a, x)
$$

Then there is for each $a \in \mathbf{N}^{n}$ an $x \in \mathbf{N}$ such that $(P \vee Q)(a, x)$. The computability of A follows by noting that for all $a \in \mathbf{N}^{n}$ we have

$$
A(a) \Longleftrightarrow P(a, \mu x(P \vee Q)(a, x))
$$

Proposition 5.5.7. Every complete and computably axiomatizable L-theory is decidable.

Proof. Let T be a complete L-theory with computable axiomatization Σ. Then $\ulcorner T\urcorner=\ulcorner\operatorname{Th}(\Sigma)\urcorner$ is computably generated. Now observe:

$$
\begin{aligned}
a \notin\ulcorner T\urcorner & \Longleftrightarrow a \notin \text { Sent or }\langle\operatorname{SN}(\neg), a\rangle \in\ulcorner T\urcorner \\
& \Longleftrightarrow a \notin \text { Sent or } \exists b\left(\operatorname{Prf}_{\Sigma}(b) \text { and }(b)_{\operatorname{lh}(b)-1}=\langle\operatorname{SN}(\neg), a\rangle\right)
\end{aligned}
$$

Hence the complement of $\ulcorner T\urcorner$ is computably generated. Thus T is decidable by the Negation Theorem.

Representability implies Computability. We prove here the converse of the Representability Theorem, as promised at the end of Section 5.4. In this subsection we assume that L is numerical.

Lemma 5.5.8. The function $\mathrm{Num}: \mathbf{N} \rightarrow \mathbf{N}$ defined by $\operatorname{Num}(a)=\left\ulcorner S^{a} 0\right\urcorner$ is computable.

Proof. $\operatorname{Num}(0)=\ulcorner 0\urcorner$ and $\operatorname{Num}(a+1)=\langle\operatorname{SN}(S), \operatorname{Num}(a)\rangle$.
Thus, given an L-formula $\varphi(x)$, the function

$$
a \mapsto\left\ulcorner\varphi\left(S^{a} 0\right)\right\urcorner=\operatorname{Sub}(\ulcorner\varphi\urcorner,\ulcorner x\urcorner, \operatorname{Num}(a))
$$

is computable; this should also be intuitively clear. Such computable functions will play an important role in what follows.

Proposition 5.5.9. Suppose Σ is a computable consistent set of L-sentences. Then every Σ-representable $U \subseteq \mathbf{N}^{n}$ is computable.

Proof. The case $n=0$ is trivial, so let $n \geq 1$. Suppose $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is an L-formula that Σ-represents $U \subseteq \mathbf{N}^{n}$. As Σ is consistent, we have

$$
U\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow \Sigma \vdash \varphi\left(S^{a_{1}} 0, \ldots, S^{a_{n}} 0\right) \quad\left(a_{1}, \ldots, a_{n} \in \mathbf{N}\right)
$$

Define $s: \mathbf{N}^{n} \rightarrow \mathbf{N}$ by $s\left(a_{1}, \ldots, a_{n}\right):=\left\ulcorner\varphi\left(S^{a_{1}} 0, \ldots, S^{a_{n}} 0\right)\right\urcorner$. It is intuitively clear that s is computable, but here is a proof. For $i=1, \ldots, n$, define

$$
s_{i}: \mathbf{N}^{i} \rightarrow \mathbf{N}, \quad s_{i}\left(a_{1}, \ldots, a_{i}\right):=\left\ulcorner\varphi\left(S^{a_{1}} 0, \ldots, S^{a_{i}} 0, x_{i+1}, \ldots, x_{n}\right)\right\urcorner .
$$

Then $s_{1}\left(a_{1}\right)=\operatorname{Sub}\left(\ulcorner\varphi\urcorner,\left\ulcorner x_{1}\right\urcorner, \operatorname{Num}\left(a_{1}\right)\right),\left(a_{1} \in \mathbb{N}\right)$, so s_{1} is computable. Next,

$$
s_{i+1}\left(a_{1}, \ldots, a_{i}, a_{i+1}\right)=\operatorname{Sub}\left(s_{i}\left(a_{1}, \ldots, a_{i}\right),\left\ulcorner x_{i+1}\right\urcorner, \operatorname{Num}\left(a_{i+1}\right)\right) \quad(1 \leq i<n)
$$

for all $a_{1}, \ldots, a_{i+1} \in \mathbf{N}$, so the computability of s_{i} gives that of s_{i+1}. Thus $s=s_{n}$ is computable. By the first display we obtain that for all $a \in \mathbb{N}^{n}$,

$$
U(a) \Longleftrightarrow \Sigma \vdash \varphi\left(S^{a} 0\right) \Longleftrightarrow s(a) \in\ulcorner\operatorname{Th}(\Sigma)\urcorner .
$$

Now Σ is computable, so $\ulcorner\operatorname{Th}(\Sigma)\urcorner \subseteq \mathbf{N}$ is computably generated by Lemma 5.5.5. Take a computable $R \subseteq \mathbf{N}^{n+1}$ such that for all $x \in \mathbf{N}$,

$$
x \in\ulcorner\operatorname{Th}(\Sigma)\urcorner \Longleftrightarrow \exists y R(x, y) .
$$

Then by the above, for all $a \in \mathbf{N}^{n}$,

$$
U(a) \Longleftrightarrow \exists y R(s(a), y)
$$

exhibiting U as computably generated. By the definition of " Σ-representable" the complement $\neg U$ is also Σ-representable, so $\neg U$ is computably generated as well. Then by the Negation Theorem U is computable.

Corollary 5.5.10. Suppose $L \supseteq L(\underline{\mathrm{~N}})$ and Σ is a computable consistent set of L-sentences. Then every Σ-representable function $f: \mathbf{N}^{n} \rightarrow \mathbf{N}$ is computable.

Proof. Suppose $f: \mathbf{N}^{n} \rightarrow \mathbf{N}$ is Σ-representable. Then its graph is Σ-representable by Exercise (1) of Section 5.4, so this graph is computable by Proposition 5.5.9. Thus f is computable by Lemma 5.1.9.

In view of the Representability Theorem, these two results give also a nice characterization of computability. Let a function $f: \mathbf{N}^{n} \rightarrow \mathbf{N}$ be given.

Corollary 5.5.11. f is computable if and only if f is $\underline{\mathrm{N}}$-representable.

Relaxing the assumption of a finite language. Much of the above does not really need the assumption that L is finite. In the discussion below we only assume that L is countable, so the case of finite L is included. First, we assign to each symbol

$$
s \in\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right\} \sqcup\{\text { logical symbols }\}
$$

its symbol number $\mathrm{SN}(s) \in \mathbf{N}$ as follows: $\mathrm{SN}\left(\mathrm{v}_{i}\right):=2 i$, and for

$$
\begin{aligned}
s & =\top, \perp, \neg, \vee, \wedge,=, \exists, \forall, \text { respectively, put } \\
\mathrm{SN}(s) & =1,3,5,7,9,11,13,15, \text { respectively. }
\end{aligned}
$$

This part of our numbering of symbols is independent of L.
By a numbering of L we mean an injective function $L \rightarrow \mathbf{N}$ that assigns to each $s \in L$ an odd natural number $\mathrm{SN}(s)>15$ such that if s is a relation symbol, then $\mathrm{SN}(s) \equiv 1 \bmod 4$, and if s is a function symbol, then $\mathrm{SN}(s) \equiv 3 \bmod 4$. Such a numbering of L is said to be computable if the sets

$$
\operatorname{SN}(L)=\{\operatorname{SN}(s): s \in L\}) \subseteq \mathbf{N}, \quad\{(\operatorname{SN}(s), \operatorname{arity}(s)): s \in L\} \subseteq \mathbf{N}^{2}
$$

are computable. (So if L is finite, then every numbering of L is computable.)
Given a numbering of L we use it to assign to each L-term t and each L formula φ its Gödel number $\ulcorner t\urcorner$ and $\ulcorner\varphi\urcorner$, just as we did earlier in the section.
Suppose a computable numbering of L is given, with the corresponding Gödel numbering of L-terms and L-formulas. Then Lemmas 5.5.1, 5.5.2, and 5.5.3 go through, as a diligent reader can easily verify.

Let also a set Σ of L-sentences be given. Define $\ulcorner\Sigma\urcorner:=\{\ulcorner\sigma\urcorner: \sigma \in \Sigma\}$, and call Σ computable if $\ulcorner\Sigma\urcorner$ is a computable subset of \mathbf{N}. We define $\operatorname{Prf}_{\Sigma}$ to be the set of all Gödel numbers of proofs from Σ, and for an L-theory T we define the notions of T being computably axiomatizable, T being decidable, and T being undecidable, all just as we did earlier in this section. (Note, however, that the definitions of these notions are all relative to our given computable numbering of L; for finite L different choices of numbering of L yield equivalent notions of Σ being computable, T being computably axiomatizable, and T being decidable.) It is now routine to check that Lemmas 5.5.4, 5.5.5, Propositions 5.5.7, 5.5.9, and Corollary 5.5.10 go through.

Exercises.

(1) If $f: \mathbf{N} \rightarrow \mathbf{N}$ is computable and $f(x)>x$ for all $x \in \mathbf{N}$, then $f(\mathbf{N})$ is computable.
(2) Let the set $X \subseteq \mathbf{N}$ be nonempty. Then X is computably generated iff there is a computable function $f: \mathbf{N} \rightarrow \mathbf{N}$ such that $X=f(\mathbf{N})$. Moreover, if X is infinite and computably generated, then such f can be chosen to be injective.
(3) Every infinite computably generated subset of \mathbf{N} has an infinite computable subset.
(4) A function $F: \mathbf{N}^{n} \rightarrow \mathbf{N}$ is computable iff its graph is computably generated.
(5) Let a and b denote positive real numbers. Call a computable if there are computable functions $f, g: \mathbf{N} \rightarrow \mathbf{N}$ such that for all $n>0$,

$$
g(n) \neq 0 \text { and }|a-f(n) / g(n)|<1 / n .
$$

Then:
(i) every positive rational number is computable, and e is computable;
(ii) if a and b are computable, so are $a+b, a b$, and $1 / a$, and if in addition $a>b$, then $a-b$ is also computable;
(iii) a is computable if and only if the binary relation R_{a} on \mathbf{N} defined by

$$
R_{a}(m, n) \Longleftrightarrow n>0 \text { and } m / n<a
$$

is computable. (Hint: use the Negation Theorem.)

5.6 Theorems of Gödel and Church

In this section we assume that the finite language L extends $L(\underline{\mathrm{~N}})$.
Theorem 5.6.1 (Church). No consistent L-theory extending $\underline{\mathrm{N}}$ is decidable.
Before giving the proof we record the following consequence:
Corollary 5.6.2 (Weak form of Gödel's Incompleteness Theorem). Each computably axiomatizable L-theory extending $\underline{\mathrm{N}}$ is incomplete.

Proof. Immediate from 5.5.7 and Church's Theorem.
We will indicate in the next Section how to construct for any consistent computable set of L-sentences $\Sigma \supseteq \underline{\mathrm{N}}$ an L-sentence σ such that $\Sigma \nvdash \sigma$ and $\Sigma \nvdash \neg \sigma$. (The corollary above only says that such a sentence exists.)

For the proof of Church's Theorem we need a few lemmas.
Let $P \subseteq A^{2}$ be any binary relation on a set A. For $a \in A$, we let $P(a) \subseteq A$ be given by the equivalence $P(a)(b) \Leftrightarrow P(a, b)$.

Lemma 5.6.3 (Cantor). Given any $P \subseteq A^{2}$, its antidiagonal $Q \subseteq A$ defined by

$$
Q(b) \Longleftrightarrow \neg P(b, b)
$$

is not of the form $P(a)$ for any $a \in A$.

Proof. Suppose $Q=P(a)$, where $a \in A$. Then $Q(a)$ iff $P(a, a)$. But by definition, $Q(a)$ iff $\neg P(a, a)$, a contradiction.

This is essentially Cantor's proof that no $f: A \rightarrow \mathfrak{P}(A)$ can be surjective. (Use $P(a, b): \Leftrightarrow b \in f(a)$; then $P(a)=f(a)$.)

Definition. Let Σ be a set of L-sentences. We fix a variable x (e. g. $x=\mathrm{v}_{0}$) and define the binary relation $P^{\Sigma} \subseteq \mathbf{N}^{2}$ by

$$
P^{\Sigma}(a, b) \Longleftrightarrow \operatorname{Sub}(a,\ulcorner x\urcorner, \operatorname{Num}(b)) \in\ulcorner\operatorname{Th}(\Sigma)\urcorner
$$

For an L-formula $\varphi(x)$ and $a=\ulcorner\varphi(x)\urcorner$, we have

$$
\operatorname{Sub}\left(\ulcorner\varphi(x)\urcorner,\ulcorner x\urcorner,\left\ulcorner S^{b} 0\right\urcorner\right)=\left\ulcorner\varphi\left(S^{b} 0\right)\right\urcorner,
$$

so

$$
P^{\Sigma}(a, b) \Longleftrightarrow \Sigma \vdash \varphi\left(S^{b} 0\right)
$$

Lemma 5.6.4. Suppose $\Sigma \supseteq \underline{\mathrm{N}}$ is consistent. Then each computable set $X \subseteq \mathbf{N}$ is of the form $X=P^{\Sigma}(a)$ for some $a \in \mathbf{N}$.

Proof. Let $X \subseteq \mathbf{N}$ be computable. Then X is Σ-representable by Theorem 5.4.4, say by the formula $\varphi(x)$, i. e. $X(b) \Rightarrow \Sigma \vdash \varphi\left(S^{b} 0\right)$, and $\neg X(b) \Rightarrow \Sigma \vdash \neg \varphi\left(S^{b} 0\right)$. So $X(b) \Leftrightarrow \Sigma \vdash \varphi\left(S^{b} 0\right)$ (using consistency to get " \Leftarrow "). Take $a=\ulcorner\varphi(x)\urcorner$; then $X(b)$ iff $\Sigma \vdash \varphi\left(S^{b} 0\right)$ iff $P^{\Sigma}(a, b)$, that is, $X=P^{\Sigma}(a)$.

Proof of Church's Theorem. Let $\Sigma \supseteq \underline{N}$ be consistent. We have to show that then $\operatorname{Th}(\Sigma)$ is undecidable, that is, $\ulcorner\operatorname{Th}(\Sigma)\urcorner$ is not computable. Suppose that $\ulcorner\mathrm{Th}(\Sigma)\urcorner$ is computable. Then the antidiagonal $Q^{\Sigma} \subseteq \mathbf{N}$ of P^{Σ} is computable:

$$
b \in Q^{\Sigma} \Leftrightarrow(b, b) \notin P^{\Sigma} \Leftrightarrow \operatorname{Sub}(b,\ulcorner x\urcorner, \operatorname{Num}(b)) \notin\ulcorner\operatorname{Th}(\Sigma)\urcorner .
$$

By Lemma 5.6.3, Q^{Σ} is not among the $P^{\Sigma}(a)$. Therefore by Lemma 5.6.4, Q^{Σ} is not computable, a contradiction. This concludes the proof.

By Lemma 5.5.5 the subset $\left\ulcorner\mathrm{Th}_{L}(\underline{\mathrm{~N}})\right\urcorner$ of \mathbf{N} is computably generated. But this set is not computable:

Corollary 5.6.5. $\operatorname{Th}(\underline{\mathrm{N}})$ and $\operatorname{Th}(\emptyset)$ (in the language L) are undecidable.
Proof. The undecidability of $\operatorname{Th}(\underline{\mathrm{N}})$ is a special case of Church's Theorem. Let $\wedge \underline{\mathrm{N}}$ be the sentence $\underline{\mathrm{N} 1} \wedge \cdots \wedge \underline{\mathrm{~N} 9}$. Then, for any L-sentence σ,

$$
\underline{\mathrm{N}} \vdash_{L} \sigma \Longleftrightarrow \emptyset \vdash_{L} \wedge \underline{\mathrm{~N}} \rightarrow \sigma,
$$

that is, for all $a \in \mathbf{N}$,

$$
a \in\ulcorner\operatorname{Th}(\underline{\mathrm{~N}})\urcorner \Longleftrightarrow a \in \operatorname{Sent} \text { and }\langle\mathrm{SN}(\vee),\langle\operatorname{SN}(\neg),\ulcorner\wedge \underline{\mathrm{N}}\urcorner\rangle, a\rangle \in\ulcorner\operatorname{Th}(\emptyset)\urcorner .
$$

Therefore, if $\operatorname{Th}(\emptyset)$ were decidable, then $\operatorname{Th}(\underline{\mathrm{N}})$ would be decidable; but $\operatorname{Th}(\underline{\mathrm{N}})$ is undecidable. So $\operatorname{Th}(\emptyset)$ is undecidable.

We assumed in the beginning of this section that $L \supseteq L(\underline{\mathrm{~N}})$, but the statement that $\operatorname{Th}_{L}(\emptyset)$ is undecidable also makes sense without this restriction. For that statement to be true, however, we cannot just drop this restriction. For example, if $L=\{F\}$ with F a unary function symbol, then $\operatorname{Th}_{L}(\emptyset)$ is decidable.

Readers unhappy with the restriction that L is finite can replace it by the weaker one that L is countable and equipped with a computable numbering as defined at the end of Section 5.5. Such a numbering comes with corresponding notions of "computable" (for a set of L-sentences) and "decidable" (for an L theory), and the above material in this section goes through with the same proofs.

Discussion. We have seen that $\underline{\mathrm{N}}$ is quite weak. A very strong set of axioms in the language $L(\underline{\mathrm{~N}})$ is PA (1st order Peano Arithmetic). Its axioms are those of \underline{N} together with all induction axioms, that is, all sentences of the form

$$
\forall x[(\varphi(x, 0) \wedge \forall y(\varphi(x, y) \rightarrow \varphi(x, S y))) \rightarrow \forall y \varphi(x, y)]
$$

where $\varphi(x, y)$ is an $L(\underline{\mathrm{~N}})$-formula, $x=\left(x_{1}, \ldots, x_{n}\right)$, and $\forall x$ stands for $\forall x_{1} \ldots \forall x_{n}$.
Note that PA is consistent, since it has $\mathfrak{N}=(\mathbf{N} ;<, 0, S,+, \cdot)$ as a model. Also $\ulcorner\mathrm{PA}\urcorner$ is computable (exercise). Thus by the theorems above, $\operatorname{Th}(\mathrm{PA})$ is undecidable and incomplete. To appreciate the significance of this result, one needs a little background knowledge, including some history.

Over a century of experience has shown that number theoretic assertions can be expressed by sentences of $L(\underline{\mathrm{~N}})$, admittedly in an often contorted way. (That is, we know how to construct for any number theoretic statement a sentence σ of $L(\underline{\mathrm{~N}})$ such that the statement is true if and only if $\mathfrak{N} \models \sigma$. In most cases we just indicate how to construct such a sentence, since an actual sentence would be too unwieldy without abbreviations.)

What is more important, we know from experience that any established fact of classical number theory-including results obtained by sophisticated analytic and algebraic methods - can be proved from PA , in the sense that $\mathrm{PA} \vdash \sigma$ for the sentence σ expressing that fact. Thus before Gödel's Incompleteness Theorem it seemed natural to conjecture that PA is complete. (Did people realize at the time that completeness of PA, or similar statements, imply the decidability of number theory? This is not clear to me, but decidability of number theory would surely have been considered as astonishing. Part of the issue here is that notions of completeness and decidability were at the time, before Gödel, just in the process of being defined.) Of course, the situation cannot be remedied by adding new axioms to PA, at least if we insist that the axioms are true in \mathfrak{N} and that we have effective means to tell which sentences are axioms. In this sense, the Incompleteness Theorem is pervasive.

5.7 A more explicit incompleteness theorem

In Section 5.6 we obtained Gödel's Incompleteness Theorem as an immediate corollary of Church's theorem. In this section, we prove the incompleteness
theorem in the more explicit form stated in the introduction to this chapter.
In this section $L \supseteq L(\underline{\mathrm{~N}})$ is a finite language, and Σ is a set of L-sentences. We also fix two distinct variables x and y.
We shall indicate how to construct, for any computable consistent $\Sigma \supseteq \underline{\mathrm{N}}$, a formula $\varphi(x)$ of $L(\underline{\mathrm{~N}})$ with the following properties:
(i) $\underline{\mathrm{N}} \vdash \varphi\left(S^{m} 0\right)$ for each m;
(ii) $\Sigma \nvdash \forall x \varphi(x)$.

Note that then the sentence $\forall x \varphi(x)$ is true in \mathfrak{N} but not provable from Σ. Here is a sketch of how to make such a sentence. Assume for simplicity that $L=L(\underline{\mathrm{~N}})$ and $\mathfrak{N} \vDash \Sigma$. The idea is to construct sentences σ and σ^{\prime} such that
(1) $\mathfrak{N} \models \sigma \leftrightarrow \sigma^{\prime}$; and (2) $\mathfrak{N} \models \sigma^{\prime} \Longleftrightarrow \Sigma \nvdash \sigma$.

From (1) and (2) we get $\mathfrak{N} \models \sigma \Longleftrightarrow \Sigma \nvdash \sigma$. Assuming that $\mathfrak{N} \models \neg \sigma$ produces a contradiction. Hence σ is true in \mathfrak{N}, and thus(!) not provable from Σ.

How to implement this strange idea? To take care of (2), one might guess that $\sigma^{\prime}=\forall x \neg \operatorname{pr}\left(x, S^{\ulcorner\sigma\urcorner} 0\right)$ where $\operatorname{pr}(x, y)$ is a formula representing in $\underline{\mathrm{N}}$ the binary relation $\operatorname{Pr} \subseteq \mathbf{N}^{2}$ defined by

$$
\begin{array}{r}
\operatorname{Pr}(m, n) \Longleftrightarrow m \text { is the Gödel number of a proof from } \Sigma \\
\text { of a sentence with Gödel number } n .
\end{array}
$$

But how do we arrange (1)? Since $\sigma^{\prime}:=\forall x \neg \operatorname{pr}(x, S\ulcorner\sigma\urcorner 0)$ depends on σ, the solution is to apply the fixed-point lemma below to $\rho(y):=\forall x \neg \operatorname{pr}(x, y)$.

This finishes our sketch. What follows is a rigorous implementation.
Lemma 5.7.1 (Fixpoint Lemma). Suppose $\Sigma \supseteq$ N. Then for every L-formula $\rho(y)$ there is an L-sentence σ such that $\Sigma \vdash \sigma \leftrightarrow \rho\left(S^{n} 0\right)$ where $n=\ulcorner\sigma\urcorner$.

Proof. The function $(a, b) \mapsto \operatorname{Sub}(a,\ulcorner x\urcorner, \operatorname{Num}(b)): \mathbf{N}^{2} \rightarrow \mathbf{N}$ is computable by Lemma 5.5.2. Hence by the representability theorem it is N -representable. Let $\operatorname{sub}\left(x_{1}, x_{2}, y\right)$ be an $L(\underline{\mathrm{~N}})$-formula representing it in $\underline{\mathrm{N}}$. We can assume that the variable x does not occur in $\operatorname{sub}\left(x_{1}, x_{2}, y\right)$. Then for all a, b in \mathbf{N},

$$
\begin{equation*}
\underline{\mathrm{N}} \vdash \operatorname{sub}\left(S^{a} 0, S^{b} 0, y\right) \leftrightarrow y=S^{c} 0, \quad \text { where } c=\operatorname{Sub}(a,\ulcorner x\urcorner, \operatorname{Num}(b)) \tag{1}
\end{equation*}
$$

Now let $\rho(y)$ be an L-formula. Define $\theta(x):=\exists y(\operatorname{sub}(x, x, y) \wedge \rho(y))$ and let $m=\ulcorner\theta(x)\urcorner$. Let $\sigma:=\theta\left(S^{m} 0\right)$, and put $n=\ulcorner\sigma\urcorner$. We claim that

$$
\Sigma \vdash \sigma \leftrightarrow \rho\left(S^{n} 0\right)
$$

Indeed,

$$
n=\ulcorner\sigma\urcorner=\left\ulcorner\theta\left(S^{m} 0\right)\right\urcorner=\operatorname{Sub}\left(\ulcorner\theta(x)\urcorner,\ulcorner x\urcorner,\left\ulcorner S^{m} 0\right\urcorner\right)=\operatorname{Sub}(m,\ulcorner x\urcorner, \operatorname{Num}(m)) .
$$

So by (1),

$$
\begin{equation*}
\underline{\mathrm{N}} \vdash \operatorname{sub}\left(S^{m} 0, S^{m} 0, y\right) \leftrightarrow y=S^{n} 0 \tag{2}
\end{equation*}
$$

We have

$$
\sigma=\theta\left(S^{m} 0\right)=\exists y\left(\operatorname{sub}\left(S^{m} 0, S^{m} 0, y\right) \wedge \rho(y)\right),
$$

so by (2) we get $\Sigma \vdash \sigma \leftrightarrow \exists y\left(y=S^{n} 0 \wedge \rho(y)\right)$. Hence, $\Sigma \vdash \sigma \leftrightarrow \rho\left(S^{n} 0\right)$.
Theorem 5.7.2. Suppose $\Sigma \supseteq \underline{\mathrm{N}}$ is consistent and computable. Then there exists an $L(\underline{\mathrm{~N}})$-formula $\varphi(x)$ such that $\underline{\mathrm{N}} \vdash \varphi\left(S^{m} 0\right)$ for each m, but $\Sigma \nvdash \forall x \varphi(x)$.
Proof. Consider the relation $\operatorname{Pr}_{\Sigma} \subseteq \mathbf{N}^{2}$ defined by

$$
\begin{array}{r}
\operatorname{Pr}_{\Sigma}(m, n) \Longleftrightarrow m \text { is the Gödel number of a proof from } \Sigma \\
\quad \text { of an } L \text {-sentence with Gödel number } n .
\end{array}
$$

Since Σ is computable, $\operatorname{Pr}_{\Sigma}$ is computable. Hence $\operatorname{Pr}_{\Sigma}$ is representable in \underline{N}. Let $\operatorname{pr}_{\Sigma}(x, y)$ be an $L(\underline{\mathrm{~N}})$-formula representing $\operatorname{Pr}_{\Sigma}$ in $\underline{\mathrm{N}}$, and hence in Σ. Because Σ is consistent we have for all m, n :

$$
\begin{align*}
\Sigma \vdash \operatorname{pr}_{\Sigma}\left(S^{m} 0, S^{n} 0\right) & \Longleftrightarrow \operatorname{Pr}_{\Sigma}(m, n) \tag{1}\\
\Sigma \vdash \neg \operatorname{pr}_{\Sigma}\left(S^{m} 0, S^{n} 0\right) & \Longleftrightarrow \neg \operatorname{Pr}_{\Sigma}(m, n) \tag{2}
\end{align*}
$$

Let $\rho(y)$ be the $L(\underline{\mathrm{~N}})$-formula $\forall x \neg \operatorname{pr}_{\Sigma}(x, y)$. Lemma 5.7 .1 (with $L=L(\underline{\mathrm{~N}})$ and $\Sigma=\underline{\mathrm{N}})$ provides an $L(\underline{\mathrm{~N}})$-sentence σ such that $\underline{\mathrm{N}} \vdash \sigma \leftrightarrow \rho\left(S^{\ulcorner\sigma\urcorner} 0\right)$. It follows that $\bar{\Sigma} \vdash \sigma \leftrightarrow \rho\left(S^{\ulcorner\sigma\urcorner} 0\right)$, that is

$$
\begin{equation*}
\Sigma \vdash \sigma \leftrightarrow \forall x \neg \operatorname{pr}_{\Sigma}\left(x, S^{\ulcorner\sigma\urcorner} 0\right) \tag{3}
\end{equation*}
$$

Claim: $\Sigma \nvdash \sigma$. Assume towards a contradiction that $\Sigma \vdash \sigma$; let m be the Gödel number of a proof of σ from Σ, so $\operatorname{Pr}_{\Sigma}(m,\ulcorner\sigma\urcorner)$. Because of (3) we also have $\Sigma \vdash \forall x \neg \operatorname{pr}_{\Sigma}\left(x, S^{\ulcorner\sigma\urcorner} 0\right)$, so $\Sigma \vdash \neg \operatorname{pr}_{\Sigma}\left(S^{m} 0, S^{\ulcorner\sigma\urcorner} 0\right)$, which by (2) yields $\neg \operatorname{Pr}_{\Sigma}(m,\ulcorner\sigma\urcorner)$, a contradiction. This establishes the claim.
Now put $\varphi(x):=\neg \operatorname{pr}_{\Sigma}\left(x, S^{\ulcorner\sigma\urcorner} 0\right)$. We now show :
(i) $\mathrm{N} \vdash \varphi\left(S^{m} 0\right)$ for each m. Because $\Sigma \nvdash \sigma$, no m is the Gödel number of a proof of σ from Σ. Hence $\neg \operatorname{Pr}_{\Sigma}(m,\ulcorner\sigma\urcorner)$ for each m, which by the defining property of $\operatorname{pr}_{\Sigma}$ yields $\underline{\mathrm{N}} \vdash \neg \operatorname{pr}_{\Sigma}\left(S^{m} 0, S^{\ulcorner\sigma\urcorner} 0\right)$ for each m, that is, $\underline{\mathrm{N}} \vdash \varphi\left(S^{m} 0\right)$ for each m.
(ii) $\Sigma \nvdash \forall x \varphi(x)$. This is because of the Claim and $\Sigma \vdash \sigma \leftrightarrow \forall x \varphi(x)$, by (3).

Corollary 5.7.3. Suppose that Σ is computable and true in an L-expansion \mathfrak{N}^{*} of \mathfrak{N}. Then there exists an $L(\underline{\mathrm{~N}})$-formula $\varphi(x)$ such that $\underline{\mathrm{N}} \vdash \varphi\left(S^{n} 0\right)$ for each n, but $\Sigma \cup \underline{\mathrm{N}} \nvdash \forall x \varphi(x)$.
(Note that then $\forall x \varphi(x)$ is true in \mathfrak{N}^{*} but not provable from Σ.) To obtain this corollary, apply the theorem above to $\Sigma \cup \underline{\mathrm{N}}$ in place of Σ.
This entire section, including the exercises below, goes through if we replace the standing assumption that L is finite by the weaker one that L is countable and equipped with a computable numbering as defined at the end of Section 5.5.

Exercises. The results below are due to Tarski and known as the undefinability of truth. The first exercise strengthens the special case of Church's theorem which says that the set of Gödel numbers of L-sentences true in a given L-expansion \mathfrak{N}^{*} of \mathfrak{N} is not computable. Both (1) and (2) are easy applications of the fixpoint lemma.
(1) Let \mathfrak{N}^{*} be an L-expansion of \mathfrak{N}. Then the set of Gödel numbers of L-sentences true in \mathfrak{N}^{*} is not definable in \mathfrak{N}^{*}.
(2) Suppose $\Sigma \supseteq \mathrm{N}$ is consistent. Then the set $\ulcorner\mathrm{Th}(\Sigma)\urcorner$ is not Σ-representable, and there is no truth definition for Σ. Here a truth definition for Σ is an L-formula $\operatorname{true}(y)$ such that for all L-sentences σ,

$$
\Sigma \vdash \sigma \longleftrightarrow \operatorname{true}\left(S^{n} 0\right), \text { where } n=\ulcorner\sigma\urcorner \text {. }
$$

5.8 Undecidable Theories

Church's theorem says that any consistent theory containing a certain basic amount of integer arithmetic is undecidable. How about theories like $\mathrm{Th}(\mathrm{Fl})$ (the theory of fields), and $\mathrm{Th}(\mathrm{Gr})$ (the theory of groups)? An easy way to prove the undecidability of such theories is due to Tarski: he noticed that if \mathfrak{N} is definable in some model of a theory T, then T is undecidable. The aim of this section is to establish this result and indicate some applications. In order not to distract from this theme by tedious details, we shall occasionally replace a proof by an appeal to the Church-Turing Thesis. (A conscientious reader will replace these appeals by proofs until reaching a level of skill that makes constructing such proofs utterly routine.)

In this section, L and L^{\prime} are finite languages, Σ is a set of L-sentences, and Σ^{\prime} is a set of L^{\prime}-sentences.

Lemma 5.8.1. Let $L \subseteq L^{\prime}$ and $\Sigma \subseteq \Sigma^{\prime}$.
(1) Suppose Σ^{\prime} is conservative over Σ. Then

$$
\operatorname{Th}_{L}(\Sigma) \text { is undecidable } \Longrightarrow \operatorname{Th}_{L^{\prime}}\left(\Sigma^{\prime}\right) \text { is undecidable. }
$$

(2) Suppose $L=L^{\prime}$ and $\Sigma^{\prime} \backslash \Sigma$ is finite. Then

$$
\operatorname{Th}\left(\Sigma^{\prime}\right) \text { is undecidable } \quad \Longrightarrow \quad \operatorname{Th}(\Sigma) \text { is undecidable. }
$$

(3) Suppose all symbols of $L^{\prime} \backslash L$ are constant symbols. Then

$$
\operatorname{Th}_{L}(\Sigma) \text { is undecidable } \Longleftrightarrow \operatorname{Th}_{L^{\prime}}(\Sigma) \text { is undecidable. }
$$

(4) Suppose Σ^{\prime} extends Σ by a definition. Then

$$
\operatorname{Th}_{L}(\Sigma) \text { is undecidable } \Longleftrightarrow \operatorname{Th}_{L^{\prime}}\left(\Sigma^{\prime}\right) \text { is undecidable. }
$$

Proof. (1) In this case we have for all $a \in \mathbf{N}$,

$$
a \in\left\ulcorner\operatorname{Th}_{L}(\Sigma)\right\urcorner \Longleftrightarrow a \in \operatorname{Sent}_{L} \text { and } a \in\left\ulcorner\operatorname{Th}_{L^{\prime}}\left(\Sigma^{\prime}\right)\right\urcorner .
$$

It follows that if $\operatorname{Th}_{L^{\prime}}\left(\Sigma^{\prime}\right)$ is decidable, so is $\operatorname{Th}_{L}(\Sigma)$.
(2) Write $\Sigma^{\prime}=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\} \cup \Sigma$, and put $\sigma^{\prime}:=\sigma_{1} \wedge \cdots \wedge \sigma_{N}$. Then for each L-sentence σ we have $\Sigma^{\prime} \vdash \sigma \Longleftrightarrow \Sigma \vdash \sigma^{\prime} \rightarrow \sigma$, so for all $a \in \mathbf{N}$,

$$
a \in\left\ulcorner\operatorname{Th}\left(\Sigma^{\prime}\right)\right\urcorner \Longleftrightarrow a \in \text { Sent and }\left\langle\operatorname{SN}(\vee),\left\langle\operatorname{SN}(\neg),\left\ulcorner\sigma^{\prime}\right\urcorner\right\rangle, a\right\rangle \in\ulcorner\operatorname{Th}(\Sigma)\urcorner .
$$

It follows that if $\operatorname{Th}(\Sigma)$ is decidable then so is $\operatorname{Th}\left(\Sigma^{\prime}\right)$.
(3) Let c_{0}, \ldots, c_{n} be the distinct constant symbols of $L^{\prime} \backslash L$. Given any L^{\prime} sentence σ we define the L-sentence σ^{\prime} as follows: take $k \in \mathbf{N}$ minimal such that σ contains no variable v_{m} with $m \geq k$, replace each occurrence of c_{i} in σ by v_{k+i} for $i=0, \ldots, n$, and let $\varphi\left(\mathrm{v}_{k}, \ldots, \mathrm{v}_{k+n}\right)$ be the resulting L-formula (so $\left.\sigma=\varphi\left(c_{0}, \ldots, c_{n}\right)\right)$; then $\sigma^{\prime}:=\forall \mathrm{v}_{k} \ldots \forall \mathrm{v}_{k+n} \varphi\left(\mathrm{v}_{k}, \ldots, \mathrm{v}_{k+n}\right)$. An easy argument using the completeness theorem shows that

$$
\Sigma \vdash_{L^{\prime}} \sigma \Longleftrightarrow \Sigma \vdash_{L} \sigma^{\prime}
$$

By the Church-Turing Thesis there is a computable function $a \mapsto a^{\prime}: \mathbf{N} \rightarrow \mathbf{N}$ such that $\left\ulcorner\sigma^{\prime}\right\urcorner=\ulcorner\sigma\urcorner^{\prime}$ for all L^{\prime}-sentences σ; we leave it to the reader to replace this appeal to the Church-Turing Thesis by a proof. Then, for all $a \in \mathbf{N}$:

$$
a \in\left\ulcorner\operatorname{Th}_{L^{\prime}}(\Sigma)\right\urcorner \Longleftrightarrow a \in \operatorname{Sent}_{L^{\prime}} \text { and } a^{\prime} \in\left\ulcorner\operatorname{Th}_{L}(\Sigma)\right\urcorner .
$$

This yields the \Leftarrow direction of (3); the converse holds by (1).
(4) The \Rightarrow direction holds by (1). For the \Leftarrow we use an algorithm (see Section 4.5) that computes for each L^{\prime}-sentence σ an L-sentence σ^{*} such that $\Sigma^{\prime} \vdash \sigma \leftrightarrow \sigma^{*}$. By the Church-Turing Thesis there is a computable function $a \mapsto a^{*}: \mathbf{N} \rightarrow \mathbf{N}$ such that $\left\ulcorner\sigma^{*}\right\urcorner=\ulcorner\sigma\urcorner^{*}$ for all L^{\prime}-sentences σ. Hence, for all $a \in \mathbf{N}$,

$$
a \in\left\ulcorner\operatorname{Th}_{L^{\prime}}\left(\Sigma^{\prime}\right)\right\urcorner \Longleftrightarrow a \in \operatorname{Sent}_{L^{\prime}} \text { and } a^{*} \in\left\ulcorner\operatorname{Th}_{L}(\Sigma)\right\urcorner .
$$

This yields the \Leftarrow direction of (4).
Remark. We cannot drop the assumption $L=L^{\prime}$ in (2): take $L=\emptyset, \Sigma=\emptyset$, $L^{\prime}=L(\underline{\mathrm{~N}})$ and $\Sigma^{\prime}=\emptyset$. Then $\operatorname{Th}_{L^{\prime}}\left(\Sigma^{\prime}\right)$ is undecidable by Corollary 5.6.5, but $\mathrm{Th}_{L}(\Sigma)$ is decidable (exercise).

Definition. An L-structure \mathcal{A} is said to be strongly undecidable if for every set Σ of L-sentences such that $\mathcal{A} \models \Sigma, \operatorname{Th}(\Sigma)$ is undecidable.

So \mathcal{A} is strongly undecidable iff every L-theory of which \mathcal{A} is a model is undecidable.

Example. $\mathfrak{N}=(\mathbf{N} ;<, 0, S,+, \cdot)$ is strongly undecidable. To see this, let Σ be a set of $L(\underline{\mathrm{~N}})$-sentences such that $\mathfrak{N} \models \Sigma$. We have to show that $\operatorname{Th}(\Sigma)$ is undecidable. Now $\mathfrak{N} \vDash \Sigma \cup \underline{N}$. By Church's Theorem $\operatorname{Th}(\Sigma \cup \underline{N})$ is undecidable, hence $\operatorname{Th}(\Sigma)$ is undecidable by part (2) of Lemma 5.8.1.

The following result is an easy application of part (3) of the previous lemma.

Lemma 5.8.2. Let c_{0}, \ldots, c_{n} be distinct constant symbols not in L, and let $\left(\mathcal{A}, a_{0}, \ldots, a_{n}\right)$ be an $L\left(c_{0}, \ldots, c_{n}\right)$-expansion of the L-structure \mathcal{A}. Then
$\left(\mathcal{A}, a_{0}, \ldots, a_{n}\right)$ is strongly undecidable $\Longrightarrow \mathcal{A}$ is strongly undecidable.
Theorem 5.8.3 (Tarski). Suppose the L-structure \mathcal{A} is definable in the L^{*} structure \mathcal{B} and \mathcal{A} is strongly undecidable. Then \mathcal{B} is strongly undecidable.

Proof. (Sketch) By the previous lemma (with L^{*} and \mathcal{B} instead of L and \mathcal{A}), we can reduce to the case that we have a 0 -definition $\delta: A \rightarrow B^{k}$ of \mathcal{A} in \mathcal{B}. As described at the end of Section 4.5 this allows us to introduce the finite languages L_{k} and $L_{k}^{*}=L_{k} \cup L^{*}$, the L_{k}^{*}-expansion \mathcal{B}_{k} of \mathcal{B}, a finite set $\operatorname{Def}(\delta)$ of L_{k}^{*}-sentences, and a finite set $\Delta(L, k)$ of L_{k}-sentences. Moreover,

$$
\mathcal{B}_{k} \models \operatorname{Def}(\delta) \cup \Delta(L, k)
$$

Section 4.5 contains implicitly an algorithm that computes for any L-sentence σ an L_{k}-sentence σ_{k} and an L^{*}-sentence $\delta \sigma$ such that

$$
\mathcal{A} \models \sigma \Longleftrightarrow \mathcal{B}_{k} \models \sigma_{k}, \quad \operatorname{Def}(\delta) \vdash \sigma_{k} \longleftrightarrow \delta \sigma
$$

Let Σ^{*} be a set of L^{*}-sentences such that $\mathcal{B} \models \Sigma^{*}$; we need to show that $\operatorname{Th}_{L^{*}}\left(\Sigma^{*}\right)$ is undecidable. Define Σ as the set of L-sentences σ such that

$$
\Sigma^{*} \cup \operatorname{Def}(\delta) \cup \Delta(L, k) \vdash \sigma_{k}
$$

By Lemma 4.5.7 we have for all L-sentences σ,

$$
\Sigma \vdash \sigma \Longleftrightarrow \Sigma^{*} \cup \operatorname{Def}(\delta) \cup \Delta(L, k) \vdash \sigma_{k}
$$

Suppose towards a contradiction that $\operatorname{Th}_{L^{*}}\left(\Sigma^{*}\right)$ is decidable. Then

$$
\operatorname{Th}\left(\Sigma^{*} \cup \operatorname{Def}(\delta) \cup \Delta(L, k)\right)
$$

is decidable, by part (2) of Lemma 5.8.1, so we have an algorithm for deciding whether any given L_{k}^{*}-sentence is provable from $\Sigma * \cup \operatorname{Def}(\delta) \Delta(L, k)$, and by the above equivalence this provides an algorithm for deciding whether any given L-sentence is provable from Σ. But $\mathcal{A} \models \Sigma$, so $\operatorname{Th}_{L}(\Sigma)$ is undecidable, and we have a contradiction.

Corollary 5.8.4. Th(Ring) is undecidable, in other words, the theory of rings is undecidable.

Proof. It suffices to show that the ring $(\mathbf{Z} ; 0,1,+,-, \cdot)$ of integers is strongly undecidable. Using Lagrange's theorem that

$$
\mathbf{N}=\left\{a^{2}+b^{2}+c^{2}+d^{2}: a, b, c, d \in \mathbf{Z}\right\}
$$

we see that the inclusion map $\mathbf{N} \rightarrow \mathbf{Z}$ defines \mathfrak{N} in the ring of integers, so by Tarski's Theorem the ring of integers is strongly undecidable.

For the same reason, the theory of commutative rings, of integral domains, and more generally, the theory of any class of rings that has the ring of integers among its members is undecidable.

Fact. The set $\mathbf{Z} \subseteq \mathbf{Q}$ is 0 -definable in the field $(\mathbf{Q} ; 0,1,+,-, \cdot)$ of rational numbers. Thus the ring of integers is definable in the field of rational numbers.

We shall take this here on faith. The only known proofs use non-trivial results about quadratic forms. The first of these proofs is due to Julia Robinson (late 1940s). The second one is due to Jochen Koenigsmann, Annals of Mathematics 183 (2016), 73-93, and yields definability of \mathbf{Z} by a universal formula.

Corollary 5.8.5. The theory $\mathrm{Th}(\mathrm{Fl})$ of fields is undecidable. The theory of any class of fields that has the field of rationals among its members is undecidable.

Exercises. The point of exercises (2) and (3) is to prove that the theory of groups is undecidable. In fact, the theory of any class of groups that has the group G of (3) among its members is undecidable. On the other hand, $\operatorname{Th}(\mathrm{Ab})$, the theory of abelian groups, is known to be decidable (Szmielew).

In (2) and (3) we let a, b, c denote integers; also, a divides b (notation: $a \mid b$) if $a x=b$ for some integer x, and c is a least common multiple of a and b if $a|c, b| c$, and $c \mid x$ for every integer x such that $a \mid x$ and $b \mid x$. Recall that if a and b are not both zero, then they have a unique positive least common multiple, and that if a and b are coprime (that is, there is no integer $x>1$ with $x \mid a$ and $x \mid b$), then they have $a b$ as a least common multiple.
(1) Argue informally, using the Church-Turing Thesis, that $\operatorname{Th}(A C F)$ is decidable. You can use the fact that ACF has QE.
(2) The structure $(\mathbf{Z} ; 0,1,+, \mid)$ is strongly undecidable, where \mid is the binary relation of divisibility on \mathbf{Z}. Hint: Show that if $b+a$ is a least common multiple of a and $a+1$, and $b-a$ is a least common multiple of a and $a-1$, then $b=a^{2}$. Use this to define the squaring function in $(\mathbf{Z} ; 0,1,+, \mid)$, and then show that multiplication is 0-definable in $(\mathbf{Z} ; 0,1,+, \mid)$.
(3) Consider the group G of bijective maps $\mathbf{Z} \rightarrow \mathbf{Z}$, with composition as the group multiplication. Then G (as a model of Gr) is strongly undecidable. Hint: let s be the element of G given by $s(x)=x+1$. Check that if $g \in G$ commutes with s, then $g=s^{a}$ for some a. Next show that

$$
a \mid b \Longleftrightarrow s^{b} \text { commutes with each } g \in G \text { that commutes with } s^{a} \text {. }
$$

Use these facts to specify a definition of $(\mathbf{Z} ; 0,1,+, \mid)$ in the group G.
(4) Let $L=\{F\}$ have just a binary function symbol. Then predicate logic in L, that is, $\operatorname{Th}_{L}(\emptyset)$, is undecidable.

As to exercise (4), predicate logic in the language whose only symbol is a binary relation symbol is also known to be undecidable. On the other hand, predicate logic in the language whose only symbol is a unary function symbol is decidable.

To do?

- improve titlepage
- improve or delete index
- more exercises (from homework, exams)
- footnotes pointing to alternative terminology, etc.
- brief discussion of classes at end of "Sets and Maps"?
- \square \square at the end of results without proof?
- brief discussion on $\mathrm{P}=\mathrm{NP}$ in connection with propositional logic
- section(s) on boolean algebra, including Stone representation, LindenbaumTarski algebras, etc.
- section on equational logic? (boolean algebras, groups, as examples)
- solution to a problem by Erdös via compactness theorem, and other simple applications of compactness
- include "equality theorem",
- translation of one language in another (needed in connection with Tarski theorem in last section)
- more details on back-and-forth in connection with unnested formulas
- extra elementary model theory (universal classes, model-theoretic criteria for qe, etc., application to ACF, maybe extra section on RCF, Ax's theorem.
- On computability: a few extra results on c.e. sets, and exponential diophantine result.
- basic framework for many-sorted logic.

[^0]: ${ }^{1}$ In the case of set theory one could dispute this. Cantor's discoveries were profound, but even so, the main influence of set theory on the rest of mathematics was to enable simple constructions of great generality, like cartesian products, quotient sets and power sets, and this involves only very elementary set theory.

[^1]: ${ }^{2}$ Here we do not count as part of classical number theory some results like Ramsey's Theorem that can be stated in the language of arithmetic, but are arguably more in the spirit of logic and combinatorics.

[^2]: ${ }^{3}$ Sometimes we shall write $f a$ instead of $f(a)$ in order to cut down on parentheses.
 "Other words for "domain" and "codomain" are "source" and "target", respectively.

[^3]: ${ }^{5}$ We also say " $g: C \rightarrow D$ is an extension of $f: A \rightarrow B$ " or " $f: A \rightarrow B$ is a restriction of $g: C \rightarrow D$."

[^4]: ${ }^{6}$ One also uses the term total order instead of linear order.

[^5]: ${ }^{1}$ What we call here a language is also known as a signature, or a vocabulary.

[^6]: ${ }^{2}$ It is also called the universe of \mathcal{A}; we prefer less grandiose terminology.

[^7]: ${ }^{1}$ The use of the term "relations" here has nothing to do with n-ary relations on sets.

[^8]: ${ }^{1} \mathrm{~A}$ better name would have been Incompletability Theorem.

[^9]: ${ }^{2}$ Perhaps antidiagonalization would be a better name.

[^10]: ${ }^{3}$ Instead of "computably axiomatizable," also "recursively axiomatizable" and "effectively axiomatizable" are used.

